Skip to main content
Log in

Blow-up, Zero α Limit and the Liouville Type Theorem for the Euler-Poincaré Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the Euler-Poincaré equations in \({\mathbb {R}^N}\) . We prove local existence of weak solutions in \({W^{2,p}(\mathbb {R}^N), p > N}\) , and local existence of unique classical solutions in \({H^k (\mathbb {R}^N)}\) , k > N/2 + 3, as well as a blow-up criterion. For the zero dispersion equation (α = 0) we prove a finite time blow-up of the classical solution. We also prove that as the dispersion parameter vanishes, the weak solution converges to a solution of the zero dispersion equation with sharp rate as α → 0, provided that the limiting solution belongs to \({C([0, T);H^k(\mathbb {R}^N))}\) with k > N/2 + 3. For the stationary weak solutions of the Euler-Poincaré equations we prove a Liouville type theorem. Namely, for α > 0 any weak solution \({\mathbf{u} \in H^1(\mathbb{R}^N)}\) is u=0; for α= 0 any weak solution \({\mathbf{u} \in L^2(\mathbb{R}^N)}\) is u=0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.: Sur un principe variationnel pour les ecoulements stationnaires des liq- uides parfaits et ses applications aux problemes de stanbilité non-lineaires. J. Méc. 5, 29–43 (1966)

    Google Scholar 

  2. Bardos C., Linshiz J., Titi E.S.: Global regularity and convergence of a Birkhoff-Rott-α approximation of the dynamics of vortex sheets of the 2D Euler equations. Comm. Pure and Appl. Math. 63, 697–746 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bressan A., Constantin A.: Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 183, 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Camassa R., Holm D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Chae D.: On the nonexistence of global weak solutions to the Navier-Stokes-Poisson equations in \({\mathbb {R}^N}\) . Comm. PDE 35, 535–557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chertock A., Liu J.-G., Pendleton T.: Convergence of a particle method and global weak solutions for a family of evolutionary PDEs. SIAM J. Numer. Anal. 20, 1–21 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chen S., Foias C., Holm D.D., Olson E., Titi E.S., Wynne S.: Camassa-Holm equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. 81, 5338–5341 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Constantin A., Escher J.: Global weak solutions for a shallow water equation. Indiana Univ. Math. J. 47, 1527–1545 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin A., Escher J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Serie IV 26, 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Constantin A., Molinet L.: Global weak solutions for a shallow water equation. Comm. Math. Phys. 211, 45–61 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Ebin D., Marsden J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  12. Foias C., Holm D.D., Titi E.S.: The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Dyn. and Diff. Eqns. 14, 1–35 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fuchssteiner B., Fokas A.S: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D 4, 47–66 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Hirani, A.N., Marsden, J.E., Arvo, J.: Averaged template matching equations, Lecture Notes in Computer Science, Volume 2134, EMMCVPR, Berlin Heidelberg New York: Springer, 2001 pp. 528–543

  15. Khesin, B, Wendt, R.: The geometry of infinite-dimensional groups. Berlin-Heidelberg-New York: Springer, 2009

  16. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Berlin-Heidelberg-New York: Springer-Verlag, 1984

  17. Holm, D.D., Marsden, J.E.: Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation, The breadth of symplectic and Poisson geometry, Progr. Math., Volume 232, Boston, MA: Birkhäuser Boston, 2005, pp. 203–235

  18. Holm D.D., Marsden J.E., Ratiu T.S.: Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 80, 4173–4177 (1998)

    Article  ADS  Google Scholar 

  19. Holm D.D., Marsden J.E., Ratiu T.S.: Euler-Poincaré equations and semi-direct products with applications to continuum theories. Adv. in Math. 137, 1–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holm D.D., Nitsche M., Putkaradze V.: Euler-alpha and vortex blob regularization of vortex filament and vortex sheet motion. J. Fluid Mech. 555, 149–176 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Holm D.D., Ratnanather J.T., Trouvé A., Younes L.: Soliton dynamics in computational anatomy. NeuroImage 23, S170–S178 (2004)

    Article  Google Scholar 

  22. Holm, D.D., Schmah, T., Stoica, C.: Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions. Oxford: Oxford University Press, 2009

  23. Jiu, Q.S., Niu, D.J., Titi, E.S., Xin, Z.P.: The Euler-α approximations to the 3D axisymmetric Euler equations with vortex-sheets initial data. Preprint, 2009

  24. McKean H.P.: Breakdown of the Camassa-Holm equation. Comm. Pure Appl. Math. 57, 416–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Molinet L.: On well-posedness results for Camassa-Holm equation on the line: a survey. J. Nonlinear Math. Phys. 11, 521–533 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Marsden J.E., Shkoller S.: Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-α) equations on bounded domains. Proc. Roy. Soc. London A 359, 1449–1468 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  27. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton, NJ: Princeton University Press, 1970

  28. Taylor, M.: Tools for PDE, AMS Mathematical Surveys and Monographs 81, Providence, RI: Amer. Math. Soc., 2000

  29. Xin Z., Zhang P.: On the weak solutions to a shallow water equation. Comm. Pure Appl. Math. 53, 1411–1433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Younes, L.: Shapes and Diffeomorphisms. Berlin-Heidelberg-New York: Springer, 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Liu.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, D., Liu, JG. Blow-up, Zero α Limit and the Liouville Type Theorem for the Euler-Poincaré Equations. Commun. Math. Phys. 314, 671–687 (2012). https://doi.org/10.1007/s00220-012-1534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1534-8

Keywords

Navigation