Bambusi D., Grébert B. (2006) Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135(3): 507–567
MathSciNet
MATH
Article
Google Scholar
Berti, M., Bolle, Ph.: Quasi-periodic solutions Sobolev regularity of NLS on \({ \mathbb{T}^d}\) with a multiplicative potential. to appear on Eur. Jour. Math., http://arxiv.org/abs/1012.1427v1 [math.Ap], 2010
Bombieri E., Pila J. (1989) The number of integral points on arcs and ovals. Duke Math. J. 59(2): 337–357
MathSciNet
MATH
Article
Google Scholar
Bourgain J. (1998) Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. (2) 148(2): 363–439
MathSciNet
MATH
Article
Google Scholar
Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. Volume 158 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 2005
Chavaudret C. (2011) Reducibility of quasiperiodic cocycles in linear Lie groups. Erg. The. Dyn. Sys. 31(3): 741–769
MathSciNet
MATH
Article
Google Scholar
Colliander J., Keel M., Staffilani G., Takaoka H., Tao T. (2010) Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181(1): 39–113
MathSciNet
ADS
MATH
Article
Google Scholar
Craig W., Wayne C.E. (1993) Newton’s method and periodic solutions of nonlinear wave equations. Comm. Pure Appl. Math. 46(11): 1409–1498
MathSciNet
MATH
Article
Google Scholar
Eliasson L.H. (2001) Almost reducibility of linear quasi-periodic systems. Proc. Symp. Pure Math. 69: 679–705
MathSciNet
Google Scholar
Geng J., Yi Y. (2007) Quasi-periodic solutions in a nonlinear Schrüdinger equation. J. Diff. Eqs. 233: 512–542
MathSciNet
MATH
Article
Google Scholar
Geng J., You J., Xu X. (2011) An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226(6): 5361–5402
MathSciNet
MATH
Article
Google Scholar
Gentile G., Procesi M. (2008) Periodic solutions for the Schrödinger equation with nonlocal smoothing nonlinearities in higher dimension. J. Diff. Eqs. 245(11): 3253–3326
MathSciNet
MATH
Article
Google Scholar
Gentile G., Procesi M. (2009) Periodic solutions for a class of nonlinear partial differential equations in higher dimension. Commun. Math. Phys. 289(3): 863–906
MathSciNet
ADS
MATH
Article
Google Scholar
Kuksin S., Pöschel J. (1996) Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. of Math. (2) 143(1): 149–179
MathSciNet
MATH
Article
Google Scholar
Pöschel J. (1996) A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(1): 119–148
MathSciNet
MATH
Google Scholar
Procesi M. (2010) A normal form for beam and non-local nonlinear Schrödinger equations. J. of Physics A: Math. Theor. 43(43): 434028
MathSciNet
ADS
Article
Google Scholar
Wang, W.M.: Quasi-periodic solutions of the Schrödinger equation with arbitrary algebraic nonlinearities. Preprint, http://arxiv.org/abs/0907.3409v2 [math.Ap], 2009
Wang, W.M.: Supercritical nonlinear Schrödinger equations i: Quasi-periodic solutions. Preprint, http://arxiv.org/abs/1007.0156v1 [math.Ap], 2010
Wang, W.M.: Supercritical nonlinear Schrödinger equations ii: Almost global existence. Preprint, http://arxiv.org/abs/1007.0154v1 [math.Ap], 2010