Skip to main content
Log in

Birkhoff Normal Form for the Derivative Nonlinear Schrödinger Equation

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

This paper is concerned with the derivative nonlinear Schrödinger equation with periodic boundary conditions. We obtain complete Birkhoff normal form of order six. As an application, the long time stability for solutions of small amplitude is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi, D.: Birkhoff normal form for some nonlinear PDEs. Commun. Math. Phys., 234, 253–285 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bambusi, D.: A Birkhoff normal form theorem for some semilinear PDEs, In: Hamiltonian Dynamical Systems and Applications, Springer, Dordrecht, 2008, 213–247

    Chapter  Google Scholar 

  3. Bambusi, D., Delort, J. M., Grébert, B., et al.: Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Commun. Pure Appl. Math., 60, 1665–1690 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bambusi, D., Grébert, B.: Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 135, 507–567 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bernier, J., Faou, E., Grébert, B.: Rational normal forms and stability of small solutions to nonlinear Schrödinger equations. Ann. PDE, 6(2), Paper No. 14, 65 pp. 2020

  6. Bernier, J., Grébert, B.: Long time dynamics for generalized Korteweg—de Vries and Benjamin—Ono equations, arXiv:2006.04397v1, 2020

  7. Berti, M., Delort, J. M.: Almost global solutions of capillary-gravity water waves equations on the circle, Lecture Notes of the Unione Matematica Italiana, Vol. 24, Springer, Cham, 2018

    Book  Google Scholar 

  8. Bourgain, J.: On diffusion in high-dimensional Hamiltonian systems and PDE. J. Anal. Math., 80, 1–35 (2000)

    Article  MathSciNet  Google Scholar 

  9. Cong, H., Liu, J., Yuan, X.: Stability of KAM tori for nonlinear Schrödinger equation. Mem. Amer. Math. Soc., 239 (1134), 2016

  10. Delort, J. M.: Quasi-linear perturbations of Hamiltonian Klein—Gordon equations on spheres. Mem. Amer. Math. Soc., 234 (1103), 2015

  11. Faou, E., Grébert, B.: A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus. Anal. PDE, 6, 1243–1262 (2013)

    Article  MathSciNet  Google Scholar 

  12. Gao, M., Liu, J.: Invariant Cantor manifolds of quasi-periodic solutions for the derivative nonlinear Schrödinger equation. J. Differential Equations, 267, 1322–1375 (2019)

    Article  MathSciNet  Google Scholar 

  13. Grébert, B., Imekraz, R., Paturel, E.: Normal forms for semilinear quantum harmonic oscillators. Commun. Math. Phys., 291, 763–798 (2009)

    Article  MathSciNet  Google Scholar 

  14. Grébert, B., Kappeler, T.: The defocusing NLS equation and its normal form, EMS Series of Lectures in Mathematics, European Mathematical Society, Zürich, 2014

    Book  Google Scholar 

  15. Kappeler, T., Pöschel, J.: KdV&KAM, Springer-Verlag, Berlin, Heidelberg, 2003

    Book  Google Scholar 

  16. Kaup, D. J., Newell, A. C.: An exact solution for a derivative nonlinear Schrüdinger equation. J. Math. Phys., 19, 798–801 (1978)

    Article  Google Scholar 

  17. Kuksin, S. B., Püoschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrüdinger equation. Ann. Math., 143, 147–179 (1996)

    Article  Google Scholar 

  18. Liu, J., Yuan, X.: KAM for the derivative nonlinear Schrüdinger equation with periodic boundary conditions. J. Differential Equations, 256, 1627–1652 (2014)

    Article  MathSciNet  Google Scholar 

  19. Mio, K., Ogino, T., Minami, K., et al.: Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J. Phys. Soc. Jpn., 41, 265–271 (1976)

    Article  Google Scholar 

  20. Mjølhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys., 16, 321–334 (1976)

    Article  Google Scholar 

  21. Sulem, C., Sulem, P. L.: The Nonlinear Schroüdinger Equation, Appl. Math. Sci. 139, Springer-Verlag, New York, 1999

    MATH  Google Scholar 

  22. Yuan, X., Zhang, J.: Long time stability of Hamiltonian partial differential equations. SIAM J. Math. Anal., 46, 3176–3222 (2014)

    Article  MathSciNet  Google Scholar 

  23. Yuan, X., Zhang, J.: Averaging principle for the KdV equation with a small initial value. Nonlinearity, 29, 603–656 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Jun Liu.

Additional information

Supported by NNSFC (Grant Nos. 11671280, 11822108) and Fok Ying Tong Education Foundation (Grant No. 161002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.J. Birkhoff Normal Form for the Derivative Nonlinear Schrödinger Equation. Acta. Math. Sin.-English Ser. 38, 249–262 (2022). https://doi.org/10.1007/s10114-022-0472-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-022-0472-4

Keywords

MR(2010) Subject Classification

Navigation