Skip to main content
Log in

Inelastic Character of Solitons of Slowly Varying gKdV Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study soliton-like solutions of the variable coefficients, the subcritical gKdV equation

$$u_t + (u_{xx} -\lambda u + a(\varepsilon x) u^m )_x =0,\quad {\rm in} \quad \mathbb{R}_t\times\mathbb{R}_x, \quad m=2,3\,\, { \rm and }\,\, 4,$$

with \({\lambda\geq 0, a(\cdot ) \in (1,2)}\) a strictly increasing, positive and asymptotically flat potential, and \({\varepsilon}\) small enough. In previous works (Muñoz in Anal PDE 4:573–638, 2011; On the soliton dynamics under slowly varying medium for generalized KdV equations: refraction vs. reflection, SIAM J. Math. Anal. 44(1):1–60, 2012) the existence of a pure, global in time, soliton u(t) of the above equation was proved, satisfying

$$\lim_{t\to -\infty}\|u(t) - Q_1(\cdot -(1-\lambda)t) \|_{H^1(\mathbb{R})} =0,\quad 0\leq \lambda<1,$$

provided \({\varepsilon}\) is small enough. Here R(t, x) := Q c (x − (cλ)t) is the soliton of R t +  (R xx λ R + R m) x = 0. In addition, there exists \({\tilde \lambda \in (0,1)}\) such that, for all 0 < λ < 1 with \({\lambda\neq \tilde \lambda}\) , the solution u(t) satisfies

$$\sup_{t\gg \frac{1}{\varepsilon}}\|u(t) - \kappa(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}\lesssim \varepsilon^{1/2}.$$

Here \({{\rho'(t) \sim (c_\infty(\lambda) -\lambda)}}\) , with \({{\kappa(\lambda)=2^{-1/(m-1)}}}\) and \({{c_\infty(\lambda)>\lambda}}\) in the case \({0<\lambda<\tilde\lambda}\) (refraction), and \({\kappa(\lambda) =1}\) and c (λ) < λ in the case \({\tilde \lambda<\lambda<1}\) (reflection).

In this paper we improve our preceding results by proving that the soliton is far from being pure as t → + ∞. Indeed, we give a lower bound on the defect induced by the potential a(·), for all \({{0<\lambda<1, \lambda\neq \tilde \lambda}}\) . More precisely, one has

$$\liminf_{t\to +\infty}\| u(t) - \kappa_m(\lambda)Q_{c_\infty}(\cdot-\rho(t)) \|_{H^1(\mathbb{R})}>rsim \varepsilon^{1 +\delta},$$

for any \({{\delta>0}}\) fixed. This bound clarifies the existence of a dispersive tail and the difference with the standard solitons of the constant coefficients, gKdV equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamin T.B.: The stability of solitary waves. Proc. Roy. Soc. London A 328, 153–183 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  2. Berestycki H., Lions P.-L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rat. Mech. Anal. 82, 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  3. Bona J.L., Souganidis P., Strauss W.: Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. London 411, 395–412 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Dejak S.I., Jonsson B.L.G.: Long-time dynamics of variable coefficient modified Korteweg-de Vries solitary waves. J. Math. Phys. 47(7), 072703 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  5. Dejak S.I., SigalI.M.:Long-time dynamics of KdV solitary waves over a variable bottom.Comm. Pure Appl. Math. 59, 869–905 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gang Z., Sigal I.M.: Relaxation of solitons in nonlinear Schrödinger equations with potential. Adv. Math. 216(2), 443–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gang, Z., Weinstein, M.I.: Dynamics of Nonlinear Schrödinger / Gross-Pitaevskii Equations; Mass Transfer in Systems with Solitons and Degenerate Neutral Modes, to appear in Anal. and PDE, available at http://arxiv.org/abs/0811.0261v1 [math.ph], 2008

  8. Grimshaw R.: Slowly varying solitary waves. I. Korteweg–de Vries equation. Proc. Roy. Soc. London Ser. A 368(1734), 359–375 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Gustafson S., Fröhlich J., Jonsson B.L.G., Sigal I.M.: Long time motion of NLS solitary waves in a confining potential. Ann. Henri Poincaré 7(4), 621–660 (2006)

    Article  ADS  MATH  Google Scholar 

  10. Gustafson S., Fröhlich J., Jonsson B.L.G., Sigal I.M.: Solitary wave dynamics in an external potential. Commun. Math. Phys. 250, 613–642 (2004)

    ADS  MATH  Google Scholar 

  11. Holmer J.: Dynamics of KdV solitons in the presence of a slowly varying potential. Int. Math. Res. Not. 2011(23), 5397–5397 (2011) doi:10.1093/imrn/rnq284

    MathSciNet  MATH  Google Scholar 

  12. Holmer, J., Zworski, M.: Soliton interaction with slowly varying potentials. Int. Math. Res. Not., 2008, art. ID rnn026, (2008)

  13. Holmer J., Marzuola J., Zworski M.: Soliton Splitting by External Delta Potentials. J. Nonlinear Sci. 17(4), 349–367 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Holmer J., Marzuola J., Zworski M.: Fast soliton scattering by delta impurities. Commun. Math. Phys. 274(1), 187–216 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Karpman, V.I.,Maslov, E.M.: Perturbation theory for solitons. Soviet Phys. JETP 46(2), 537–559 (1977); translated from Z. Eksper. Teoret. Fiz. 73(2), 281–29 (1977)

  16. Kaup D.J., Newell A.C.: Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory. Proc. Roy. Soc. London Ser. A 361, 413–446 (1978)

    Article  ADS  Google Scholar 

  17. Ko K., Kuehl H.H.: Korteweg-de Vries soliton in a slowly varying medium. Phys. Rev. Lett. 40(4), 233–236 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  18. Kenig C.E., Ponce G., Vega L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Comm. Pure Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lochak P.: On the adiabatic stability of solitons and the matching of conservation laws. J. Math. Phys. 25(8), 2472–2476 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Martel Y.: Asymptotic N–soliton–like solutions of the subcritical and critical generalized Korteweg–de Vries equations. Amer. J. Math. 127, 1103–1140 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Martel Y., Merle F.: Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18, 55–80 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Martel Y., Merle F.: Description of two soliton collision for the quartic gKdV equations. Ann. of Math. 174(2), 757–857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Martel Y., Merle F.: Stability of two soliton collision for nonintegrable gKdV equations. Commun. Math. Phys. 286, 39–79 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Martel Y., Merle F.: Inelastic interaction of nearly equal solitons for the quartic gKdV equation, Invent. Math. 183(3), 563–648 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Martel Y., Merle F., Tsai T.P.: Stability and asymptotic stability in the energy pace of the sum of N solitons for subcritical gKdV equations. Commun. Math. Phys. 231, 347–373 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Muñoz, C.: On the soliton dynamics under slowly varying medium for generalized NLS equations. to appear in Math. Annalen, doi:10.1007/s00208-011-076-8, 2012 (arXiv:1002.1295)

  27. Muñoz, C. (2011) On the soliton dynamics under slowly varying medium for generalized KdV equations. to appear Anal. & PDE 4, no, 4:573–638

    Google Scholar 

  28. Muñoz C.: On the soliton dynamics under slowly varying medium for generalized KdV equations: refraction vs. reflection. SIAM J. Math. Anal. 44(1), 1–60 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muñoz, C.: Dynamics of soliton-like solutions for slowly varying, generalized KdV equations. Oberwolfach report 2010

  30. Newell, A.: Solitons in Mathematics and Physics. In: CBMS-NSF Regional Conference Series in Applied Mathematics, 48. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 1985

  31. Pego R.L., Weinstein M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164(2), 305–349 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Perelman G.: A remark on soliton-potential interactions for nonlinear Schrödinger equations. Math. Res. Lett. 16(3), 477–486 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  33. Weinstein M.I.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3), 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Muñoz.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, C. Inelastic Character of Solitons of Slowly Varying gKdV Equations. Commun. Math. Phys. 314, 817–852 (2012). https://doi.org/10.1007/s00220-012-1463-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1463-6

Keywords

Navigation