Skip to main content
Log in

A Short Proof of Stability of Topological Order under Local Perturbations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Recently, the stability of certain topological phases of matter under weak perturbations was proven. Here, we present a short, alternate proof of the same result. We consider models of topological quantum order for which the unperturbed Hamiltonian H 0 can be written as a sum of local pairwise commuting projectors on a D-dimensional lattice. We consider a perturbed Hamiltonian H = H 0 + V involving a generic perturbation V that can be written as a sum of short-range bounded-norm interactions. We prove that if the strength of V is below a constant threshold value then H has well-defined spectral bands originating from the low-lying eigenvalues of H 0. These bands are separated from the rest of the spectrum and from each other by a constant gap. The width of the band originating from the smallest eigenvalue of H 0 decays faster than any power of the lattice size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wen, X.G., Niu, Q.: Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces. Phys. Rev. B41, 9377 (1990)

  2. Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bravyi S., Hastings M.B., Michalakis S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  4. Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  5. Hastings M.B.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  6. Nachtergaele B., Sims R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Hastings M.B., Xiao-Gang W.: Quasi-adiabatic continuation of quantum states: the stability of topological ground state degeneracy and emergent gauge invariance. Phys. Rev. B 72, 045141 (2005)

    Article  ADS  Google Scholar 

  8. Osborne T. J.: Simulating adiabatic evolution of gapped spin systems. Phys. Rev. A 75, 032321 (2007)

    Article  ADS  Google Scholar 

  9. Kennedy T., Tasaki H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Yarotsky D.A.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261, 799–819 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Klich I.: On the stability of topological phases on a lattice. Ann. Phys. 325(10), 2120–2131 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Kirkwood J., Thomas L.: Expansions and phase transitions for the ground state of quantum ising lattice systems. Commun. Math. Phys. 88, 569–580 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  13. Datta N., Kennedy T.: Expansions for one quasiparticle states in spin 1/2 systems. J. Stat. Phys. 108, 373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yarotsky D.: Perturbations of ground states in weakly interacting quantum spin systems. J. Math. Phys. 45(6), 2134 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Bravyi S., DiVincenzo D., Loss D.: Polynomial-time algorithm for simulation of weakly interacting quantum spin systems. Commun. Math. Phys. 284, 481–507 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Hastings M.B.: Solving gapped Hamiltonians locally. Phys. Rev. B 73, 085115 (2006)

    Article  ADS  Google Scholar 

  17. Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006) see Proposition D.1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Levin M.A., Wen X.-G.: String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005)

    Article  ADS  Google Scholar 

  19. Freedman, M.H., Kitaev, A., Larsen, M.J., Wang, Z.: Topological quantum computation. http://arXiv.org/abs/quant-ph/0101025v2, 2002

  20. Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  Google Scholar 

  21. Bravyi S., Poulin D., Terhal B.: Tradeoffs for reliable quantum information storage in 2D systems. Phy. Rev. 104, 050503 (2010)

    ADS  Google Scholar 

  22. Kato T.: Perturbation theory for linear operators. Springer-Verlag, New York (1966)

    MATH  Google Scholar 

  23. Hastings, M.B.: http://arXiv.org/abs/1001.5280v2 [math-phy], 2010

  24. Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Ingham A.E.: A note on Fourier transforms. J. London Math. Soc. 9, 29 (1934)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Hastings.

Additional information

Communicated by I.M. Sigal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravyi, S., Hastings, M.B. A Short Proof of Stability of Topological Order under Local Perturbations. Commun. Math. Phys. 307, 609–627 (2011). https://doi.org/10.1007/s00220-011-1346-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1346-2

Keywords

Navigation