Skip to main content
Log in

Perturbations of the Landau Hamiltonian: Asymptotics of Eigenvalue Clusters

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider the asymptotic behavior of the spectrum of the Landau Hamiltonian plus a short-range continuous potential. The spectrum of the operator forms eigenvalue clusters. We obtain a Szegő limit theorem for the eigenvalues in the clusters as the cluster index and the field strength B tend to infinity with a fixed ratio \({\mathcal E}\). The answer involves the averages of the potential over circles of radius \(\sqrt{{\mathcal E}/2}\) (classical orbits). After rescaling, this becomes a semiclassical problem where the role of Planck’s constant is played by 2/B. We also discuss a related inverse spectral result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 5th edn. Harcourt/Academic Press, Burlington (2001)

    MATH  Google Scholar 

  2. Avendaño Camacho, M., Hislop, P.D., Villegas-Blas, C.: Semiclassical Szegő limit of eigenvalue clusters for the hydrogen atom Zeeman Hamiltonian. Ann. Henri Poincaré 18(12), 3933–3973 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. Cárdenas, E., Raikov, G., Tejeda, I.: Spectral properties of Landau Hamiltonians with non-local potentials. Asymptotic Anal. 120(3–4), 337–371 (2020)

    Article  MathSciNet  Google Scholar 

  4. Combescure, M., Didier, M.R.: Coherent States and Applications in Mathematical Physics. Theoret. Math. Phys. Springer, Dordrecht (2012)

  5. Dubin, D., Hennings, M., Smith, T.: Quantization in polar coordinates and the phase operator. Publ. RIMS Kyoto Univ 30, 479–532 (1994)

    Article  MathSciNet  Google Scholar 

  6. Dimassi, M.: D’eveloppements asymptotiques de l’op’erateur de Schrödinger avec champ magnétique fort. Commun. Partial Differ. Equ. 26, 595–627 (2001)

  7. Gatteschi, L.: Asymptotics and bounds for the zeros of Laguerre polynomials: a survey. J. Comput. Appl. Math. 144(1–2), 7–27 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Gawronski, W.: On the asymptotic distribution of the zeros of Hermite, Laguerre, and Jonquiere polynomials. J. Approx. Theory 50(3), 214–231 (1987)

    Article  MathSciNet  Google Scholar 

  9. Guillemin, V., Uribe, A., Wang, Z.: Band invariants for perturbations of the harmonic oscillator. J. Funct. Anal. 263(5), 1435–1467 (2012)

    Article  MathSciNet  Google Scholar 

  10. Guillemin, V., Uribe, A.: Some spectral properties of periodic potentials. Pseudodifferential operators (Oberwolfach, 1986), 192–213. Lecture Notes in Math 1256, Springer, Berlin, (1987)

  11. Hislop, P.D., Villegas-Blas, C.: Semiclassical Szegő limit of resonance clusters for the hydrogen atom Stark Hamiltonian. Asymptotic Anal. 79(1–2), 17–44 (2011)

    MATH  Google Scholar 

  12. Ivrii, V.: Microlocal Analysis and Precise Spectral Asymptotics. Springer, Berlin (2013)

    MATH  Google Scholar 

  13. Ivrii, V.: Microlocal Analysis, Sharp Spectral Asymptotics and Applications. Springer, Cham (2019)

    Book  Google Scholar 

  14. Martinez, A.: An Introduction to Semiclassical and Microlocal Analysis. Universitext. Springer, New York (2002)

    Book  Google Scholar 

  15. Ojeda-Valencia, D., Villegas-Blas, C.: On limiting eigenvalue distribution theorems in semiclassical analysis. Spectral Analysis of Quantum Hamiltonians, pp. 221–252, Oper. Theory Adv. Appl., 224. Birkhauser, Springer Basel AG, Basel (2012)

  16. Lungenstrass, T., Raikov, G.: A trace formula for long-range perturbations of the Landau Hamiltonian. Ann. Henri Poincaré 15(8), 1523–1548 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Pushnitski, A., Raikov, G., Villegas-Blas, C.: Asymptotic density of eigenvalue clusters for the perturbed Landau Hamiltonian. Commun. Math. Phys. 320(2), 425–453 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Raikov, G.: Eigenvalue asymptotics for the Schrödinger operator in strong constant magnetic fields. Commun. Part. Differ. Eq. 23(9–10), 1583–1619 (1998)

    Article  Google Scholar 

  19. Uribe, A., Villegas-Blas, C.: Asymptotics of spectral clusters for a perturbation of the hydrogen atom. Commun. Math. Phys. 280(1), 123–144 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Weinstein, A.: Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J. 44(4), 883–892 (1977)

    Article  MathSciNet  Google Scholar 

  21. Wong, M.W.: The Weyl Transform. Springer, Berlin (1998)

    Google Scholar 

Download references

Acknowledgements

We wish to thank the referees for constructive comments. A.U. thanks the Instituto de Matemáticas UNAM Unidad Cuernavaca for its hospitality.

Funding

The funding was provided by Consejo Nacional de Ciencia y Tecnología (A1-S-17634, CB-2016-283531-F-0363), Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (IN106418, IN105718), National Science Foundation (1440140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Uribe.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Hernandez-Duenas partially supported by project CONACYT Ciencia Básica A1-S-17634. S. Pérez-Esteva partially supported by the project PAPIIT-UNAM IN104120. A. Uribe supported by the NSF under Grant No. 1440140, while he was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the fall semester of 2019. C. Villegas-Blas partially supported by projects CONACYT Ciencia Básica CB-2016-283531-F-0363 and PAPIIT-UNAM IN105718.

Appendices

A. The Weyl Quantization of Radial Functions

For the benefit of the reader, we include here some results on the Weyl quantization of radial functions that shed light on the material in Sect. 4. The result in Eq. (A.13) has been originally shown in [3] [Proposition 4.1]; we include a derivation here for completeness. See also [21], §4.

If a(xp) is a symbol in \({\mathbb R}^{2n}\), its Weyl quantization is the operator \(a^W(x, \hbar D)\) with kernel

$$\begin{aligned} {\mathcal K}_a(x,y) = \frac{1}{(2\pi \hbar )^n} \int e^{i\hbar ^{-1}(x-y)\cdot p} a\left( \frac{x+y}{2}, p\right) \, \mathrm{d}p. \end{aligned}$$

The corresponding bilinear form \(Q_a(f,g) = \langle a^W(x,\hbar D)(f),\overline{g}\rangle \) is

$$\begin{aligned} \forall f,\,g\in {\mathcal S}({\mathbb R}^n)\qquad Q_a(f,g)&= \frac{1}{(2\pi \hbar )^n} \iiint e^{i\hbar ^{-1}(x-y)\cdot p} a \left( \frac{x+y}{2}, p\right) \,\nonumber \\&\quad \times f(y)\, g(x) dp\,dx\,dy. \end{aligned}$$
(A.1)

It is not hard to see that

$$\begin{aligned} Q_a(f,g) = \iint a(u,p)\, {\mathcal G}(f,g)(u,p)\, du\, dp, \end{aligned}$$
(A.2)

where

$$\begin{aligned} {\mathcal G}(f,g)(u,p) = \frac{1}{(\pi \hbar )^n}\int e^{2i\hbar ^{-1}v\cdot p} f(u-v)\,g(u+v)\, \mathrm{d}v. \end{aligned}$$
(A.3)

Let \(a\in {\mathcal S}({\mathbb R}^2)\) be a radial function, that is

$$\begin{aligned} a(x,p) = \rho (r), \quad r=\sqrt{x^2+p^2}. \end{aligned}$$

To simplify notation let \(A:=a^W(x,\hbar D)\). By the equivariance of Weyl quantization with respect to the action of the symplectic (metaplectic) group, A commutes with the quantum harmonic oscillator \({\mathcal Z}= -\hbar ^2d^2/dx^2 + x^2\) and, by simplicity of the eigenvalues of the latter, the eigenfunctions \(e_n\) of \({\mathcal Z}\) are also eigenfunctions of A. Our goal is to compute the corresponding eigenvalues. We follow the argument in [5].

One can show (starting with section 13.1 of [1], for example) that if one defines the functions \(g_n(x)\) by the generating function

$$\begin{aligned} \pi ^{-1/4}\, e^{-x^2/2 +xt-t^2/4} =\sum _{n=0}^\infty \frac{t^n}{\sqrt{2^n n!}}\,g_n(x) \end{aligned}$$
(A.4)

then the \(g_n\) are orthonormal in \(L^2({\mathbb R})\) and satisfy

$$\begin{aligned} -g_n''(x) + x^2 g_n(x) = (2n+1)\,g_n(x). \end{aligned}$$

For our problem, we need the eigenfunctions of \({\mathcal Z}\), so we need to re-scale the variable x. Define

$$\begin{aligned} e_n(x) := \hbar ^{-1/4}\,g_n(x/\sqrt{\hbar }). \end{aligned}$$
(A.5)

Then, for each \(\hbar \), \(e_n\) is \(L^2\)-normalized and

$$\begin{aligned} \begin{array}{lcl} \hbar ^{1/4}\,\left[ -\hbar ^2 \frac{d^2 \ }{dx^2} e_n(x) + x^2 e_n(x)\right] &{} = &{} -\hbar \,g_n''(x/\sqrt{\hbar }) + \hbar \left( \frac{x}{\hbar }\right) ^2 g_n(x/\sqrt{\hbar }) \\ &{} = &{} \hbar (2n+1) g_n(x/\sqrt{\hbar }). \end{array} \end{aligned}$$
(A.6)

In other words, the normalized eigenfunctions \(e_n\) are given by the generating function

$$\begin{aligned} G_t(x):=(\pi \hbar )^{-1/4}\, e^{-x^2/2\hbar +xt/\sqrt{\hbar }-t^2/4} =\sum _{n=0}^\infty \frac{t^n}{\sqrt{2^n n!}}\,e_n(x,\hbar ), \end{aligned}$$
(A.7)

where the notation emphasizes that \(e_n\) also depends on \(\hbar \).

We now use this generating function to compute the eigenvalues of A. Note that

$$\begin{aligned} Q_a(G_t, G_t) = \langle A(G_t),G_t\rangle = \sum _{n=0}^\infty \frac{t^{2n}}{2^n n!}\, \lambda _n, \end{aligned}$$

where \(\lambda _n = \langle A(e_n),e_n\rangle \) is the eigenvalue of A corresponding to \(e_n\). Computing using (A.2) and (A.3):

$$\begin{aligned} {\mathcal G}(G_t, G_t)(x,p) = \frac{e^{-t^2/2}}{(\pi \hbar )^{3/2}} \int e^{2\hbar ^{-1}ivp}\, e^{-x^2/\hbar }\,e^{-v^2/\hbar }\, e^{2xt/\sqrt{\hbar }}\, \mathrm{d}v \end{aligned}$$
$$\begin{aligned} \qquad \qquad \quad = \frac{e^{-t^2/2-x^2/\hbar + 2xt/\sqrt{\hbar }}}{(\pi \hbar )^{3/2}} \int e^{2\hbar ^{-1}ivp}\,e^{-v^2/\hbar }\,\mathrm{d}v \end{aligned}$$
$$\begin{aligned} = \frac{1}{\pi \hbar }\,e^{-t^2/2-(x^2+p^2)/\hbar + 2xt/\sqrt{\hbar }}, \end{aligned}$$

and therefore,

$$\begin{aligned} \sum _{n=0}^\infty \frac{t^{2n}}{2^n n!}\, \lambda _n = \frac{e^{-t^2/2}}{\pi \hbar }\, \int _{{\mathbb R}^2} a(x,p) \,e^{-(x^2+p^2)/\hbar + 2xt/\sqrt{\hbar }}\, \mathrm{d}x\,\mathrm{d}p. \end{aligned}$$
(A.8)

Next, we use that a is radial and integrate in polar coordinates. The key integral is

$$\begin{aligned} \int _0^{2\pi } e^{2tr\cos (\theta )/\sqrt{\hbar }}\, \mathrm{d}\theta = 2\pi I_0(2tr/\sqrt{\hbar }), \end{aligned}$$
(A.9)

where \(I_0\) is the modified Bessel function of order zero. At this point, we can conclude that

$$\begin{aligned} \sum _{n=0}^\infty \frac{t^{2n}}{2^n n!}\, \lambda _n = \frac{2e^{-t^2/2}}{\hbar }\, \int _0^\infty \rho (r) e^{-r^2/\hbar }\,I_0(2tr/\sqrt{\hbar })\, r\mathrm{d}r. \end{aligned}$$
(A.10)

Now, it is known that, for any \(u\in {\mathbb R}\),

$$\begin{aligned} I_0(s) = e^u\sum _{k=0}^\infty \frac{(-u)^k}{k!}\, L_k(s^2/4u), \end{aligned}$$
(A.11)

where the \(L_k\) are the Laguerre polynomials (in particular the right-hand side is independent of u). If we take \(u=t^2/2\), (A.11) gives us that

$$\begin{aligned} I_0(s) = e^{t^2/2}\sum _{k=0}^\infty \frac{(-t^2/2)^k}{k!} L_k(s^2/2t^2). \end{aligned}$$

Substituting back into (A.10), we obtain

$$\begin{aligned} \sum _{n=0}^\infty \frac{t^{2n}}{2^n n!}\, \lambda _n = \frac{2}{\hbar } \sum _{k\ge 0} \int _0^\infty \rho (r) e^{-r^2/\hbar }\,\frac{(-t^2)^k}{2^k k!} L_k(2r^2/\hbar )\, r\mathrm{d}r. \end{aligned}$$
(A.12)

Equating coefficients of like powers of t we conclude that \(\forall n\)

$$\begin{aligned} \lambda _n = \frac{(-1)^k2}{\hbar }\int _0^\infty \rho (r) e^{-r^2/\hbar }\,L_n(2r^2/\hbar )\, r\mathrm{d}r. \end{aligned}$$

If we now let \(u=r^2\), we finally get

$$\begin{aligned} \boxed { \lambda _n = \frac{(-1)^n}{\hbar } \int _0^\infty \rho (\sqrt{u}) e^{-u/\hbar }\,L_n(2u/\hbar )\, \mathrm{d}u. } \end{aligned}$$
(A.13)

Although we do not need it for the proof of our main theorem, we note the following:

Theorem A.1

Let (as in the main body of the paper)

$$\begin{aligned} \hbar = \frac{\mathcal E}{2n+1},\quad \mathcal {E} \text { fixed},\quad n = 1,2, \ldots , \end{aligned}$$

Then, maintaining the previous notation, as \(n\rightarrow \infty \)

$$\begin{aligned} \lambda _n = \rho (\sqrt{{\mathcal E}}) + O(\hbar ). \end{aligned}$$

Proof

By the functional calculus the operator \(\rho ({\mathcal Z}^{1/2})\) is an \(\hbar \) pseudo-differential operator with principal symbol \(\rho (r)\), that is, with the same principal symbol as \(a^W\). Therefore,

$$\begin{aligned} \lambda _n = \langle a^W(e_n),e_n\rangle = \langle \rho ({\mathcal Z}^{1/2})(e_n),e_n\rangle + O(\hbar ) = \rho (\sqrt{{\mathcal E}}) + O(\hbar ). \end{aligned}$$

\(\square \)

In view of (A.13), we immediately obtain:

Corollary A.2

Let

$$\begin{aligned} \psi _n(u) := \frac{(-1)^n}{\hbar }e^{-u/\hbar } L_n \left( \frac{2u}{\hbar } \right) \end{aligned}$$

so that \(\lambda _n = \int _0^\infty \rho (\sqrt{u}) \psi _n (u)\, \mathrm{d}u\). Then, if \(\hbar \) and n are related as above, the sequence \((\psi _n)\) tends weakly to the delta function at \({\mathcal E}\).

It is instructive to consider directly the behavior of the functions \(\psi _n\). As we will see, there is an oscillatory and a decaying region of \(\psi _n\) (similar to the Airy function). For a fixed n, \(\psi _n\) has n zeros. As n increases, where do the zeros concentrate? According to [8], the zeros of \(L_n\) are real and simple.

Let us denote by \(\lambda _{n,k}\) the zeros of \(L_n\). According to [7] (restricting to the case \(\alpha =0\)), the zeros \(\lambda _{n,k}\) are in the oscillatory region

$$\begin{aligned} 0< x < \nu := 4n+2 \end{aligned}$$

and satisfy the following inequalities and asymptotic approximation:

Theorem A.3

([7]). The first zero \(\lambda _{n,1}\) satisfies

$$\begin{aligned} 0 < \lambda _{n,1} \le \frac{3}{2n+1}, n=1,2,\ldots . \end{aligned}$$

Theorem A.4

([7]). For a fixed m, the zeros of \(L_n\) satisfy

$$\begin{aligned} \lambda _{n,n-m+1} = \nu +2^{1/3} a_m \nu ^{1/3}+\frac{1}{5} 2^{4/3} a_m^{2}\nu ^{-1/3}+O(n^{-1}),\text { as }n \rightarrow \infty , \end{aligned}$$

where \(a_m\) is the m-th negative zero of the Airy function, in decreasing order.

Let us now denote by \(\mu _{n,k}\) the zeros of \(\psi _n(u)\), so that \(\mu _{n,k}= \frac{\hbar }{2}\lambda _{n,k}\). Substituting \(\hbar = \mathcal E/(2n+1)\), Theorem A.3 implies that the first zero satisfies

$$\begin{aligned} \mu _{n,1} \le \frac{3}{2 \mathcal E} \hbar ^2. \end{aligned}$$

On the other hand, the last zero satisfies

$$\begin{aligned} \mu _{n,n} = \mathcal E+(\mathcal E/2)^{1/3}a_1 \hbar ^{2/3} + \frac{(\mathcal E)^{-1/3} a_1^2}{5}\hbar ^{4/3} + O(\hbar ^2), \text { as } \hbar \rightarrow 0. \end{aligned}$$

This implies that the first zero is close to 0 while the last one is close to \(\mathcal E\) as \(\hbar \rightarrow 0\). In fact, if we define

$$\begin{aligned} N_n(x) = \big | \left\{ k \in \{ 1,2,\ldots , n\} | \lambda _{n,k} \le x \right\} \big | , x\in \mathbb R, \end{aligned}$$

it can be shown ([8]) that

$$\begin{aligned} \lim _{n\rightarrow \infty } \frac{1}{n} N_n(4 nx) =\frac{2}{\pi } \int _0^{x}t^{-1/2} (1-t)^{1/2}\mathrm{d}t, \; \;\text { for } 0 \le x \le 1. \end{aligned}$$
Fig. 2
figure 2

Graph of \(\psi _n\) in the interval [0, 5]. Here, \(n=100\), \(\mathcal E = 3\)

We note that \(\lambda _{n,k} \le 4 n x\) if and only if \(\mu _{n,k} \le \mathcal E x \left( 1-\frac{1}{2n+1} \right) \). This implies that

$$\begin{aligned}&\lim _{n\rightarrow \infty } \frac{1}{n} \left| \left\{ k : \mu _{n,k} \le z \left( 1-\frac{1}{2n+1} \right) \right\} \right| \\&\quad = \frac{2}{\pi } \int _0^{z/\mathcal E}t^{-1/2} (1-t)^{1/2}\mathrm{d}t, \; \; 0 \le z \le \mathcal E. \end{aligned}$$

We note that the integral on the right-hand side is equal to one for \(z=\mathcal E\). In particular, this shows that the zeros of \(\psi _n\) “cover” the entire oscillatory region \([0,\mathcal E]\), asymptotically for n large.

Choosing \(n=100\) and \(\mathcal E = 3\), the corresponding graph of \(\psi _n\) in the interval [0, 5] is shown in Fig. 2. We can corroborate numerically that the zeros of \(\psi _n\) are located in the oscillatory region \([0,\mathcal E]\). We can easily see that \(L_n\) is always locally decreasing near the origin and locally increasing/decreasing around the last zero for n even/odd. As a result, the last critical point of \(\psi _n\) is always a local maximum.

B. The Remainder in Taylor’s Theorem

For completeness, we include here the elementary derivation of the expression for the remainder in Taylor’s theorem that we used in the proof of Theorem 4.6. Let us start with a smooth one-variable function f and write

$$\begin{aligned} f(t)&= f({\mathcal E}) + \int _0^1 \frac{d\ }{\mathrm{d}u}f(ut + (1-u){\mathcal E})\, \mathrm{d}u \\&= f({\mathcal E})+ (t-{\mathcal E})\int _0^1 \,f'(ut + (1-u){\mathcal E})\, \mathrm{d}u . \end{aligned}$$

So if we let

$$\begin{aligned} g(t):= \int _0^1 f'(ut + (1-u){\mathcal E})\, \mathrm{d}u, \end{aligned}$$
(B.1)

then g is smooth and \(f(t) = f({\mathcal E}) + (t-{\mathcal E})g(t)\). Repeating the argument with f replaced by g, we obtain that

$$\begin{aligned} g(t) = g({\mathcal E}) + (t-{\mathcal E})R(t), \end{aligned}$$

where

$$\begin{aligned} R(t) = \int _0^1 g'(vt + (1-v){\mathcal E})\, \mathrm{d}v. \end{aligned}$$

Since \(g({\mathcal E}) = f'({\mathcal E})\), substituting we obtain \(f(t) = f({\mathcal E}) + (t-{\mathcal E})f'({\mathcal E}) + (t-{\mathcal E})^2 R(t)\), as desired. Finally, we compute the remainder R(t). Using (B.1),

$$\begin{aligned} g'(x) = \int _0^1 uf''(ux + (1-u){\mathcal E})\, \mathrm{d}u, \end{aligned}$$

and therefore

$$\begin{aligned} R(t) = \int _0^1 \int _0^1 uf''[u(vt + (1-v){\mathcal E})+ (1-u){\mathcal E}] \mathrm{d}u\, \mathrm{d}v. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Duenas, G., Pérez-Esteva, S., Uribe, A. et al. Perturbations of the Landau Hamiltonian: Asymptotics of Eigenvalue Clusters. Ann. Henri Poincaré 23, 361–391 (2022). https://doi.org/10.1007/s00023-021-01092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01092-7

Navigation