Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Communications in Mathematical Physics
  3. Article
Cyclotomic Integers, Fusion Categories, and Subfactors
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Pre-modular Fusion Categories of Small Global Dimensions

20 March 2021

Zhiqiang Yu

Slightly trivial extensions of a fusion category

31 August 2019

Jingcheng Dong

Functorial Factorizations in the Category of Model Categories

25 March 2021

Hugo Bacard

Tensor Product Decompositions of II1 Factors Arising from Extensions of Amalgamated Free Product Groups

12 June 2018

Ionut Chifan, Rolando de Santiago & Wanchalerm Sucpikarnon

Modular Tensor Categories, Subcategories, and Galois Orbits

31 March 2023

Julia Plavnik, Andrew Schopieray, … Qing Zhang

Classifying fusion categories $$\otimes $$⊗-generated by an object of small Frobenius–Perron dimension

13 March 2020

Cain Edie-Michell

The Category of Factorization

17 August 2020

Brandon Goodell & Sean K. Sather-Wagstaff

Algebraic Structures in Group-theoretical Fusion Categories

26 November 2022

Yiby Morales, Monique Müller, … Chelsea Walton

Higher Dualizability and Singly-Generated Grothendieck Categories

22 April 2021

Alexandru Chirvasitu

Download PDF
  • Open Access
  • Published: 26 September 2010

Cyclotomic Integers, Fusion Categories, and Subfactors

  • Frank Calegari1,
  • Scott Morrison2 &
  • Noah Snyder3 

Communications in Mathematical Physics volume 303, pages 845–896 (2011)Cite this article

  • 559 Accesses

  • 29 Citations

  • 9 Altmetric

  • Metrics details

Abstract

Dimensions of objects in fusion categories are cyclotomic integers, hence number theoretic results have implications in the study of fusion categories and finite depth subfactors. We give two such applications. The first application is determining a complete list of numbers in the interval (2, 76/33) which can occur as the Frobenius-Perron dimension of an object in a fusion category. The smallest number on this list is realized in a new fusion category which is constructed in the Appendix written by V. Ostrik, while the others are all realized by known examples. The second application proves that in any family of graphs obtained by adding a 2-valent tree to a fixed graph, either only finitely many graphs are principal graphs of subfactors or the family consists of the A n or D n Dynkin diagrams. This result is effective, and we apply it to several families arising in the classification of subfactors of index less than 5.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Asaeda M.: Galois groups and an obstruction to principal graphs of subfactors. Internat. J. Math. 18(2), 191–202 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Asaeda M., Haagerup U.: Exotic subfactors of finite depth with Jones indices \({(5+\sqrt{13})/2}\) and \({(5+\sqrt{17})/2}\) . Commun. Math. Phys. 202(1), 1–63 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Asaeda M., Yasuda S.: On Haagerup’s list of potential principal graphs of subfactors. Commun. Math. Phys. 286(3), 1141–1157 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bakalov, B., Kirillov, A. Jr.: Lectures on tensor categories and modular functors. Volume 21 of University Lecture Series. Providence, RI: Amer. Math. Soc., 2001

  5. Bigelow, S., Morrison, S., Peters, E., Snyder, N.: Constructing the extended Haagerup planar algebra. http://arxiv.org/abs/0909.4099v1 [math.OA], 2009

  6. Bisch D.: Principal graphs of subfactors with small Jones index. Math. Ann. 311(2), 223–231 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cassels J.W.S.: On a conjecture of R. M. Robinson about sums of roots of unity. J. Reine Angew. Math. 238, 112–131 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. Conway J.H., Jones A.J.: Trigonometric Diophantine equations (On vanishing sums of roots of unity). Acta Arith. 30(3), 229–240 (1976)

    MATH  MathSciNet  Google Scholar 

  9. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal field theory. Graduate Texts in Contemporary Physics. New York: Springer-Verlag, 1997

  10. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: Group-theoretical properties of nilpotent modular categories. http://arxiv.org/abs/0704.0195v2 [math.QA], 2007

  11. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories I. http://arxiv.org/abs/0906.0620v3 [math.QA], 2010

  12. Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories. http://arxiv.org/abs/0809.3031v2 [math.QA], 2009

  13. Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. of Math. (2) 162(2), 581–642 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Godsil, C., Royle, G.: Algebraic graph theory, Volume 207 of Graduate Texts in Mathematics. New York: Springer-Verlag, 2001

  15. Gross B.H., Hironaka E., McMullen C.T.: Cyclotomic factors of Coxeter polynomials. J. Number Theory 129(5), 1034–1043 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Haagerup, U.: Principal graphs of subfactors in the index range \({4<[M:N] <3 +\sqrt2}\). In: Subfactors (Kyuzeso, 1993). River Edge, NJ: World Sci. Publ., 1994, pp. 1–38

  17. Iwaniec H.: On the error term in the linear sieve. Acta Arith. 19, 1–30 (1971)

    MATH  MathSciNet  Google Scholar 

  18. Izumi M.: The structure of sectors associated with Longo-Rehren inclusions. II. Examples. Rev. Math. Phys. 13(5), 603–674 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jacobsthal, E.: Über Sequenzen ganzer Zahlen, von denen keine zu n teilerfremd ist. I, II, III. Norke Vid. Selsk. Forh. Trondheim 33, 117–124, 125–131, 132–139 (1961)

    Google Scholar 

  20. Jones A.J.: Sums of three roots of unity. Proc. Cambridge Philos. Soc. 64, 673–682 (1968)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Jones V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Kanold H.-J.: Über eine zahlentheoretische Funktion von Jacobsthal. Math. Ann. 170, 314–326 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kirillov A. Jr, Ostrik V.: On a q-analogue of the McKay correspondence and the ADE classification of \({\mathfrak{sl}_2}\) conformal field theories. Adv. Math. 171(2), 183–227 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kronecker L.: Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. J. Reine Angew. Math. 53, 173–175 (1857)

    Article  MATH  Google Scholar 

  25. Loxton J.H.: On the maximum modulus of cyclotomic integers. Acta Arith. 22, 69–85 (1972)

    MATH  MathSciNet  Google Scholar 

  26. McKee J., Smyth C.: Salem numbers, Pisot numbers, Mahler measure, and graphs. Experiment. Math. 14(2), 211–229 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ostrik V.: On formal codegrees of fusion categories. Math. Research Letters 16(5), 895–901 (2009)

    MATH  MathSciNet  Google Scholar 

  28. Poonen B., Rubinstein M.: The number of intersection points made by the diagonals of a regular polygon. SIAM J. Discrete Math. 11(1), 135–156 (1998) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  29. Siegel C.L.: The trace of totally positive and real algebraic integers. Ann. of Math. (2) 46, 302–312 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  30. Smith J.H.: Some properties of the spectrum of a graph. In: Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969), New York: Gordon and Breach, 1970, pp. 403–406

  31. Smyth C.J.: The mean values of totally real algebraic integers. Math. Comp. 42(166), 663–681 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tambara D., Yamagami S.: Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 209(2), 692–707 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Xu, F.: Unpublished notes, 2001

Download references

Acknowledgements

We would like to thank MathOverflow where this collaboration began (see “Number theoretic spectral properties of random graphs” http://mathoverflow.net/questions/5994/). We would also like to thank Feng Xu for helpful conversations, and Victor Ostrik for writing the Appendix. Frank Calegari was supported by NSF Career Grant DMS-0846285, NSF Grant DMS-0701048, and a Sloan Foundation Fellowship, Scott Morrison was at the Miller Institute for Basic Research at UC Berkeley, and Noah Snyder was supported by an NSF Postdoctoral Fellowship.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Mathematics, Northwestern University, Evanston, IL, 60208-2730, USA

    Frank Calegari

  2. Department of Mathematics, University of California, Berkeley, CA, 94720-3840, USA

    Scott Morrison

  3. Department of Mathematics, Columbia University, New York, NY, 10027, USA

    Noah Snyder

Authors
  1. Frank Calegari
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Scott Morrison
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Noah Snyder
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Noah Snyder.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Calegari, F., Morrison, S. & Snyder, N. Cyclotomic Integers, Fusion Categories, and Subfactors. Commun. Math. Phys. 303, 845–896 (2011). https://doi.org/10.1007/s00220-010-1136-2

Download citation

  • Received: 03 May 2010

  • Accepted: 31 May 2010

  • Published: 26 September 2010

  • Issue Date: May 2011

  • DOI: https://doi.org/10.1007/s00220-010-1136-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Dynkin Diagram
  • Fusion Rule
  • Simple Object
  • Tensor Category
  • Fusion Category
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.