Skip to main content
Log in

Yang-Mills Flows on Nearly Kähler Manifolds and G 2-Instantons

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider Lie(G)-valued G-invariant connections on bundles over spaces \({G/H,\, \mathbb{R}\times G/H\, {\rm and}\, \mathbb{R}^2\times G/H}\), where G/H is a compact nearly Kähler six-dimensional homogeneous space, and the manifolds \({\mathbb{R}\times G/H}\) and \({\mathbb{R}^2\times G/H}\) carry G 2- and Spin(7)-structures, respectively. By making a G-invariant ansatz, Yang-Mills theory with torsion on \({\mathbb{R}\times G/H}\) is reduced to Newtonian mechanics of a particle moving in a plane with a quartic potential. For particular values of the torsion, we find explicit particle trajectories, which obey first-order gradient or hamiltonian flow equations. In two cases, these solutions correspond to anti-self-dual instantons associated with one of two G 2-structures on \({\mathbb{R}\times G/H}\). It is shown that both G 2-instanton equations can be obtained from a single Spin(7)-instanton equation on \({\mathbb{R}^2\times G/H}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M., Bott R.: The Yang-Mills equations over Riemann surfaces. Phil. Trans. R. Soc. Lond. A 308, 523 (1983)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Donaldson S., Kronheimer P.B.: The geometry of four-manifolds. Clarendon Press, Oxford (1990)

    MATH  Google Scholar 

  3. Donaldson, S.K., Thomas, R.P.: Gauge theory in higher dimensions. In: The Geometric Universe, Oxford: Oxford University Press, 1998

  4. Lewis, C.: Spin(7) instantons. PhD thesis, Oxford University, 1998

  5. Thomas R.P.: A holomorphic Casson invariant for Calabi-Yau 3-folds and bundles of K3 fibrations. J. Diff. Geom. 54, 367 (2000)

    MATH  Google Scholar 

  6. Tian G.: Gauge theory and calibrated geometry. Ann. Math. 151, 193 (2000)

    Article  MATH  Google Scholar 

  7. Tao T., Tian G.: A singularity removal theorem for Yang-Mills fields in higher dimensions. J. Amer. Math. Soc. 17, 557 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brendle, S.: Complex anti-self-dual instantons and Cayley submanifolds. http://arxiv.org/abs/math/0302094v2[math.DG], 2003

  9. Sà Earp, H.N.: Instantons on G 2-manifolds. PhD thesis, Imperial College London, 2009

  10. Haydys, A.: Gauge theory, calibrated geometry and harmonic spinors. http://arxiv.org/abs/0902.3738v3[math.DG], 2009

  11. Donaldson, S.K., Segal, E.: Gauge theory in higher dimensions II. http://arxiv.org/abs/0902.3239v1[math.DG], 2009

  12. Salamon, S.M.: Riemannian geometry and holonomy groups. Pitman Res. Notes Math., V. 201, London: Pitman, 1989

  13. Joyce D.: Compact manifolds with special holonomy. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  14. Corrigan E., Devchand C., Fairlie D.B., Nuyts J.: First order equations for gauge fields in spaces of dimension greater than four. Nucl. Phys. B 214, 452 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  15. Ward R.S.: Completely solvable gauge field equations in dimension greater than four. Nucl. Phys. B 236, 381 (1984)

    Article  ADS  Google Scholar 

  16. Donaldson S.K.: Anti-self-dual Yang-Mills connections on a complex algebraic surface and stable vector bundles. Proc. Lond. Math. Soc. 50, 1 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Donaldson S.K.: Infinite determinants, stable bundles and curvature. Duke Math. J. 54, 231 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Uhlenbeck K.K., Yau S.-T.: On the existence of hermitian Yang-Mills connections on stable bundles over compact Kähler manifolds. Commun. Pure Appl. Math. 39, 257 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  19. Uhlenbeck K.K., Yau S.-T.: A note on our previous paper.. ibid. 42, 703 (1989)

    MATH  MathSciNet  Google Scholar 

  20. Mamone Capria M., Salamon S.M.: Yang-Mills fields on quaternionic spaces. Nonlinearity 1, 517 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Reyes Carrión R.: A generalization of the notion of instanton. Differ. Geom. Appl. 8, 1 (1998)

    Article  MATH  Google Scholar 

  22. Baulieu L., Kanno H., Singer I.M.: Special quantum field theories in eight and other dimensions. Commun. Math. Phys. 194, 149 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Popov A.D.: Non-Abelian vortices, super-Yang-Mills theory and Spin(7)-instantons. Lett. Math. Phys. 92, 253 (2010)

    Article  MATH  ADS  Google Scholar 

  24. Fairlie D.B., Nuyts J.: Spherically symmetric solutions of gauge theories in eight dimensions. J. Phys. A 17, 2867 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  25. Fubini S., Nicolai H.: The octonionic instanton. Phys. Lett. B 155, 369 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  26. Ivanova T.A., Popov A.D.: Self-dual Yang-Mills fields in d = 7, 8, octonions and Ward equations. Lett. Math. Phys. 24, 85 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Ivanova T.A., Popov A.D.: (Anti)self-dual gauge fields in dimension d≥4. Theor. Math. Phys. 94, 225 (1993)

    Article  MathSciNet  Google Scholar 

  28. Ivanova T.A., Lechtenfeld O.: Yang-Mills instantons and dyons on group manifolds. Phys. Lett. B 670, 91 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. Popov A.D.: Hermitian-Yang-Mills equations and pseudo-holomorphic bundles on nearly Kähler and nearly Calabi-Yau twistor 6-manifolds. Nucl. Phys. B 828, 594 (2010)

    Article  ADS  Google Scholar 

  30. Rahn T.: Yang-Mills equations of motion for the Higgs sector of SU(3)-equivariant quiver gauge theories. J. Math. Phys. 51, 072302 (2010)

    Article  ADS  Google Scholar 

  31. Ivanova T.A., Lechtenfeld O., Popov A.D., Rahn T.: Instantons and Yang-Mills flows on coset spaces. Lett. Math. Phys. 89, 231 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Green M.B., Schwarz J.H., Witten E.: Superstring Theory. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  33. Grana M.: Flux compactifications in string theory: a comprehensive review. Phys. Rept. 423, 91 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  34. Douglas M.R., Kachru S.: Flux compactification. Rev. Mod. Phys. 79, 733 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  35. Blumenhagen R., Kors B., Lüst D., Stieberger S.: Four-dimensional string compactifications with D-branes, orientifolds and fluxes. Phys. Rept. 445, 1 (2007)

    Article  ADS  Google Scholar 

  36. Strominger A.: Superstrings with torsion. Nucl. Phys. B 274, 253 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  37. Hull C.M.: Anomalies, ambiguities and superstrings. Phys. Lett. B 167, 51 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  38. Hull C.M.: Compactifications of the heterotic superstring. Phys. Lett. B 178, 357 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  39. de Wit B., Smit D.J., Hari Dass N.D.: Residual supersymmetry of compactified D=10 supergravity. Nucl. Phys. B 283, 165 (1987)

    Article  ADS  Google Scholar 

  40. Gray A.: Nearly Kähler geometry. J. Diff. Geom. 4, 283 (1970)

    MATH  Google Scholar 

  41. Wolf J.A.: Spaces of constant scalar curvature. McGraw-Hill, New York (1967)

    Google Scholar 

  42. Wolf J.A., Gray A.: Homogeneous spaces defined by Lie group automorphisms I,II. J. Diff. Geom. 2, 77, 115 (1968)

    Google Scholar 

  43. Xu, F.: SU(3)-structures and special lagrangian geometries. http://arxiv.org/abs/math/0610532v1[math.DG], 2006

  44. Butruille, J.-B.: Homogeneous nearly Kähler manifolds. http://arxiv.org/abs/math/0612655v1[math.DG], 2006

  45. Tomasiello A.: New string vacua from twistor spaces. Phys. Rev. D 78, 046007 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  46. Caviezel C., Koerber P., Kors S., Lüst D., Tsimpis D., Zagermann M.: The effective theory of type IIA AdS4 compactifications on nilmanifolds and cosets. Class. Quant. Grav. 26, 025014 (2009)

    Article  ADS  Google Scholar 

  47. Chatzistavrakidis A., Zoupanos G.: Dimensional reduction of the heterotic string over nearly-Kähler manifolds. JHEP 09, 077 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  48. Lüst D.: Compactification of ten-dimensional superstring theories over Ricci flat coset spaces. Nucl. Phys. B 276, 220 (1986)

    Article  ADS  Google Scholar 

  49. Xu, F.: Geometry of SU(3) manifolds. PhD thesis, Duke University, 2008

  50. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. 1, New York: Interscience Publishers 1963

  51. Müller-Hoissen F.: Spontaneous compactification to nonsymmetric coset spaces in Einstein Yang-Mills theory. Class. Quant. Grav. 4, L143 (1987)

    Article  Google Scholar 

  52. Müller-Hoissen F., Stückl R.: Coset spaces and ten-dimensional unified theories. Class. Quant. Grav. 5, 27 (1988)

    Article  MATH  ADS  Google Scholar 

  53. Kapetanakis D., Zoupanos G.: Coset space dimensional reduction of gauge theories. Phys. Rept. 219, 1 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  54. Manton N., Sutcliffe P.: Topological Solitons. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  55. Bryant R.L.: Metrics with exceptional holonomy. Ann. Math. 126, 525 (1987)

    Article  Google Scholar 

  56. Hitchin, N.: Stable forms and special metrics. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray, Fernandez, M., Wolf, J.A. (eds.), Contemporary Mathematics 288, Providence, RI: Amer. Math. Soc., 2001

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Harland.

Additional information

Communicated by P.T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harland, D., Ivanova, T.A., Lechtenfeld, O. et al. Yang-Mills Flows on Nearly Kähler Manifolds and G 2-Instantons. Commun. Math. Phys. 300, 185–204 (2010). https://doi.org/10.1007/s00220-010-1115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1115-7

Keywords

Navigation