Skip to main content
Log in

\(G_2\)-Instantons on the Spinor Bundle of the 3-Sphere

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We classify \(G_2\)-instantons admitting \(SU (2)^3\)-symmetries, and construct a new family of examples on the spinor bundle of the 3-sphere, equipped with the asymptotically conical, co-homogeneity one \(G_2\)-metric of Bryant–Salamon. We also show that outside of the \(SU (2)^3\)-invariant examples, any other \(G_2\)-instanton on this metric with the same asymptotic behaviour must have obstructed deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. See [23] for a discussion of constructing examples near the collapsed limit.

  2. Since \(\lbrace 1 \rbrace \times \lbrace 1 \rbrace \times SU (2)\) acts trivially on the singular orbit, we can identify the singular orbit \(SU (2)^3 / \Delta _{1,2} SU (2) \times SU (2)\) with \(SU (2)^2 / \Delta SU (2)\) in the same way.

  3. These \(SU (2)^2\)-equivariant bundles are referred to, respectively, as \(P_\textrm{Id}\) and \(P_1\) in [16].

  4. See [16, Theorem 2] for an explanation of this limit in terms of the bubbling and removable-singularity phenomenon found in [24].

References

  1. Atiyah, M., Witten, E.: M theory dynamics on a manifold of G(2) holonomy. Adv. Theoret. Math. Phys. 6, 1–106 (2003)

    Article  MathSciNet  Google Scholar 

  2. Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)

    Article  MathSciNet  Google Scholar 

  3. Brandhuber, A., Gomis, J., Gubser, S.S., Gukov, S.: Gauge theory at large \(N\) and new \(G_2\) holonomy metrics. Nuclear Phys. B 611(1–3), 179–204 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bogoyavlenskaya, O.A.: On a new family of complete Riemannian metrics on \(S^3\times {\mathbb{R} }^4\) with holonomy group \(G_2\). Sibirsk. Mat. Zh. 54(3), 551–562 (2013)

    MathSciNet  Google Scholar 

  5. Bryant, R.L., Salamon, S.M.: On the construction of some complete metrics with exceptional holonomy. Duke Math. J. 58(3), 829–850 (1989)

    Article  MathSciNet  Google Scholar 

  6. Corrigan, E., Devchand, C., Fairlie, D.B., Nuyts, J.: First-order equations for gauge fields in spaces of dimension greater than four. Nuclear Phys. B 214(3), 452–464 (1983)

    Article  MathSciNet  Google Scholar 

  7. Cvetič, M., Gibbons, G.W., Lü, H., Pope, C.N.: A \(G_2\) unification of the deformed and resolved conifolds. Phys. Lett. B 534(1–4), 172–180 (2002)

    Article  MathSciNet  Google Scholar 

  8. Charbonneau, B., Harland, D.: Deformations of nearly Kähler instantons. Commun. Math. Phys. 348(3), 959–990 (2016)

    Article  Google Scholar 

  9. Clarke, A.: Instantons on the exceptional holonomy manifolds of Bryant and Salamon. J. Geom. Phys. 82, 84–97 (2014)

    Article  MathSciNet  Google Scholar 

  10. Driscoll, J.: Deformations of asymptotically conical \(G_2\)-instantons. PhD thesis, University of Leeds (June 2020)

  11. Donaldson, S., Segal, Ed.: Gauge theory in higher dimensions, II. In Surveys in differential geometry. Volume XVI. Geometry of Special Holonomy and Related Topics, volume 16 of Survey in Differential Geometry, pp. 1–41. International Press, Somerville (2011)

  12. Donaldson, S., Richard, T.: Gauge theory in higher dimensions. In: The Geometric Universe (Oxford, 1996), pp. 31–47. Oxford University Press, Oxford (1998)

  13. Foscolo, L., Haskins, M., Nordström, J.: Infinitely many new families of complete cohomogeneity one \(\rm G_2\)-manifolds: \(\rm G_2\) analogues of the Taub-NUT and Eguchi-Hanson spaces. J. Eur. Math. Soc. 23(7), 2153–2220 (2021)

    Article  MathSciNet  Google Scholar 

  14. Hitchin, N.: Stable forms and special metrics. In Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), volume 288 of Contemporary Mathematics, pp. 70–89. American Mathematical Society, Providence (2001)

  15. Karigiannis, S.: Desingularization of \(G_2\) manifolds with isolated conical singularities. Geom. Topol. 13(3), 1583–1655 (2009)

    Article  MathSciNet  Google Scholar 

  16. Lotay, J.D., Oliveira, G.: \(\rm SU(2)^2\)-invariant \(G_2\)-instantons. Math. Ann. 371(1–2), 961–1011 (2018)

    Article  MathSciNet  Google Scholar 

  17. Markus, L.: Asymptotically autonomous differential systems. In Contributions to the theory of nonlinear oscillations, vol. 3, Annals of Mathematics Studies, no. 36, pp. 17–29. Princeton University Press, Princeton (1956)

  18. Matthies, K., Nordstrom, J., Turner, M.: \(SU(2)^2\times U(1)\)-invariant \(G_2\)-instantons on the AC limit of the \({\mathbb{C}}_{7}\) family (2022). arXiv:2202.05028

  19. Madsen, T.B., Salamon, S.: Half-flat structures on \(S^3\times S^3\). Ann. Glob. Anal. Geom. 44(4), 369–390 (2013)

    Article  Google Scholar 

  20. Nakajima, H.: Moduli spaces of anti-self-dual connections on ALE gravitational instantons. Invent. Math. 102(2), 267–303 (1990)

    Article  MathSciNet  Google Scholar 

  21. Palais, R.S.: A global formulation of the Lie theory of transformation groups. Mem. Am. Math. Soc. 22, iii+123 (1957)

  22. Simon, S.: Riemannian geometry and holonomy groups, volume 201 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copublished in the United States with Wiley, New York (1989)

  23. Stein, J.: \(SU(2)^2\)-invariant gauge theory on asymptotically conical Calabi-Yau 3-folds. J. Geom. Anal. 33(4), 121 (2023)

    Article  MathSciNet  Google Scholar 

  24. Tian, G.: Gauge theory and calibrated geometry I. Ann. Math. 151(1), 193–268 (2000)

    Article  MathSciNet  Google Scholar 

  25. Walpuski, T.: \(G_2\)-instantons, associative submanifolds and Fueter sections. Comm. Anal. Geom. 25(4), 847–893 (2017)

    Article  MathSciNet  Google Scholar 

  26. Wang, H.: On invariant connections over a principal fibre bundle. Nagoya Math. J. 13, 1–19 (1958)

    Article  MathSciNet  Google Scholar 

  27. Ward, R.S.: Completely solvable gauge-field equations in dimension greater than four. Nuclear Phys. B 236(2), 381–396 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Special thanks to Simon Salamon, Gonçalo Oliveira, Lorenzo Foscolo, Jason Lotay, and Johannes Nordström for their helpful comments and discussions. The first author was funded by the Royal Society, through a studentship supported by the Research Fellows Enhancement Award 2017 RGF-EA-180171, and the EPSRC through the UCL Research Associates Award EP-W522636-1. The second author was funded by the EPSRC Studentship 2106787 and the Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics #488631.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Stein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, J., Turner, M. \(G_2\)-Instantons on the Spinor Bundle of the 3-Sphere. J Geom Anal 34, 149 (2024). https://doi.org/10.1007/s12220-024-01573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-024-01573-1

Keywords

Mathematics Subject Classification

Navigation