Skip to main content
Log in

A Kinetic Flocking Model with Diffusion

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the stability of the equilibrium states and the rate of convergence of solutions towards them for the continuous kinetic version of the Cucker-Smale flocking in presence of diffusion whose strength depends on the density. This kinetic equation describes the collective behavior of an ensemble of organisms, animals or devices which are forced to adapt their velocities according to a certain rule implying a final configuration in which the ensemble flies at the mean velocity of the initial configuration. Our analysis takes advantage both from the fact that the global equilibrium is a Maxwellian distribution function, and, on the contrary to what happens in the Cucker-Smale model (IEEE Trans Autom Control 52:852–862, 2007), the interaction potential is an integrable function. Precise conditions which guarantee polynomial rates of convergence towards the global equilibrium are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold A., Markowich P., Toscani G., Unterreiter A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Part. Diff. Eqs. 26, 43–100 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carrillo J.A., Fornasier M., Rosado J., Toscani G.: Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal. 42(1), 218–236 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chuang Y.-L., D’Orsogna M.R., Marthaler D., Bertozzi A.L., Chayes L.: State transitions and the continuum limit for a 2D interacting, self-propelled particle system. Physica D 232, 33–47 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Cucker F., Smale S.: Emergent behavior in flocks. IEEE Transactions of Automatic Control 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  5. Degond P., Motsch S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Meth. Appl. Sci. 18(Suppl), 1193–1215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Degond P., Motsch S.: Large scale dynamics of the persistent turning walker model of fish behavior. J. Stat. Phys. 131, 989–1021 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Desvillettes L., Villani C.: On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math. 54(1), 1–42 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolbeault J., Mouhot C., Schmeiser C.: Hypocoercivity for kinetic equations with linear relaxation terms. C.R. Acad. Sci. Paris 347, 511–516 (2009)

    MATH  MathSciNet  Google Scholar 

  9. Duan R.-J.: On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in \({L^2_x(H^N_x)}\). J. Diff. Eqs. 244, 3204–3234 (2007)

    Article  Google Scholar 

  10. Duan R.-J.: Stability of the Boltzmann equation with potential forces on torus. Physica D: Nonlinear Phenomena 238, 1808–1820 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Duan, R.-J., Strain, R.M.: Optimal time decay of the Vlasov-Poisson-Boltzmann system in \({{\mathbb{R}}^3}\). Arch. Rat. Mech. Anal. (2010). doi:10.1007/s00205-010-0318-6

  12. Duan R.-J., Ukai S., Yang T.: A combination of energy method and spectral analysis for studies on systems for gas motions. Front. Math. China 4(2), 253–282 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Duan R.-J., Ukai S., Yang T., Zhao H.-J.: Optimal decay estimates on the linearized Boltzmann equation with time-dependent forces and their applications. Commun. Math. Phys. 277(1), 189–236 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Guo Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53, 1081–1094 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guo Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231, 391–434 (2002)

    Article  MATH  ADS  Google Scholar 

  16. Guo Y.: The Vlasov-Poisson-Boltzmann system near Maxwellians. Comm. Pure Appl. Math. 55(9), 1104–1135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ha S.-Y., Liu J.-G.: A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7, 297–325 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Ha S.-Y., Tadmor E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinetic Rel. Models 1(3), 415–435 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Thesis, Kyoto University, 1983

  20. Mouhot C., Neumann L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19, 969–998 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Topaz C., Bertozzi A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Topaz C.M., Bertozzi A.L., Lewis M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Bio. 68, 1601–1623 (2006)

    Article  MathSciNet  Google Scholar 

  23. Ukai S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proc. Japa. Acad. 50, 179–184 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ukai S., Yang T.: The Boltzmann equation in the space \({L^2\cap L^\infty_\beta}\): Global and time-periodic solutions. Anal. Appl. 4, 263–310 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vicsek T., Czirók A., Ben-Jacob E., Shochet O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  Google Scholar 

  26. Villani, C.: A review of mathematical topics in collisional kinetic theory. Handbook of mathematical fluid dynamics, Vol. I, Amsterdam: North-Holland, 2002, pp. 71–305

  27. Villani, C.: Hypocoercivity. Memoirs Amer. Math. Soc. 202, Providence, RI: Amer. Math. Soc. 2009, iv+141 pp

  28. Yates C., Erban R., Escudero C., Couzin L., Buhl J., Kevrekidis L., Maini P., Sumpter D.: Inherent noise can facilitate coherence in collective swarm motion. Proc. Nat. Acad. Sci. 106(14), 5464–5469 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Fornasier.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, R., Fornasier, M. & Toscani, G. A Kinetic Flocking Model with Diffusion. Commun. Math. Phys. 300, 95–145 (2010). https://doi.org/10.1007/s00220-010-1110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1110-z

Keywords

Navigation