Skip to main content
Log in

Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper considers a new model of individual displacement, based on fish motion, the so-called Persistent Turning Walker (PTW) model, which involves an Ornstein-Uhlenbeck process on the curvature of the particle trajectory. The goal is to show that its large time and space scale dynamics is of diffusive type, and to provide an analytic expression of the diffusion coefficient. Two methods are investigated. In the first one, we compute the large time asymptotics of the variance of the individual stochastic trajectories. The second method is based on a diffusion approximation of the kinetic formulation of these stochastic trajectories. The kinetic model is a Fokker-Planck type equation posed in an extended phase-space involving the curvature among the kinetic variables. We show that both methods lead to the same value of the diffusion constant. We present some numerical simulations to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldana, M., Huepe, C.: Phase transitions in self-driven many-particle systems and related non-equilibrium models: a network approach. J. Stat. Phys. 112(1/2), 135–153 (2003)

    Article  MATH  Google Scholar 

  2. Aoki, I.: A simulation study on the schooling mechanism in fish. Bull. Jpn. Soc. Sci. Fish. 48, 1081–1088 (1982)

    Google Scholar 

  3. Armbruster, D., Degond, P., Ringhofer, C.: A model for the dynamics of large queuing networks and supply chains. SIAM J. Appl. Math. 66, 896–920 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aw, A., Klar, A., Rascle, M., Materne, T.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63, 259–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bass, R.: Diffusions and Elliptic Operators. Springer, New York (1997)

    Google Scholar 

  6. Bardos, C., Santos, R., Sentis, R.: Diffusion approximation and computation of the critical size. Trans. Am. Math. Soc. 284, 617–649 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Abdallah, N., Degond, P., Mellet, A., Poupaud, F.: Electron transport in semiconductor superlattices. Q. Appl. Math. 61, 161–192 (2003)

    MathSciNet  MATH  Google Scholar 

  8. Bensoussan, A., Lions, J.L., Papanicolaou, G.C.: Boundary layers and homogenization of transport processes. J. Publ. RIMS Kyoto Univ. 15, 53–157 (1979)

    MathSciNet  Google Scholar 

  9. Brézis, H.: Analyse Fonctionnelle. Dunod, Paris (1983)

    MATH  Google Scholar 

  10. Brillinger, D.R., Preisler, H.K., Ager, A.A., Kie, J.G., Stewart, B.S.: Employing stochastic differential equations to model wildlife motion. Bull. Braz. Math. Soc. 33, 385–408 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2002)

    Google Scholar 

  12. Castella, F., Degond, P., Goudon, T.: Diffusion dynamics of classical systems driven by an oscillatory force. J. Stat. Phys. 124, 913–950 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, New York (1991)

    Google Scholar 

  14. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  15. Degond, P.: Global existence of solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. An. Sci. Ec. Norm. Sup. 19, 519–542 (1986)

    MathSciNet  MATH  Google Scholar 

  16. Degond, P.: Macroscopic limits of the Boltzmann equation: a review. In: Degond, P., Pareschi, L., Russo, G. (eds.) Modeling and Computational Methods for Kinetic Equations. Modeling and Simulation in Science, Engineering and Technology Series, pp. 3–57. Birkhäuser, Boston (2003)

    Google Scholar 

  17. Degond, P., Mancini, S.: Diffusion driven by collisions with the boundary. Asymptot. Anal. 27, 47–73 (2001)

    MathSciNet  MATH  Google Scholar 

  18. Degond, P., Mas-Gallic, S.: Existence of solutions and diffusion approximation for a model Fokker-Planck equation. Transp. Theory Stat. Phys. 16, 589–636 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. (M3AS) (to appear)

  20. Degond, P., Motsch, S.: Macroscopic limit of self-driven particles with orientation interaction. C. R. Acad. Sci. Paris, Ser. I 345, 555–560 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Degond, P., Zhang, K.: Diffusion approximation of a scattering matrix model of a semiconductor superlattice. SIAM J. Appl. Math. 63, 279–298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Degond, P., Latocha, V., Mancini, S., Mellet, A.: Diffusion dynamics of an electron gas confined between two plates. Methods Appl. Anal. 9, 127–150 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Degond, P., Lemou, M., Picasso, M.: Viscoelastic fluid models derived from kinetic equations for polymers. SIAM J. Appl. Math. 62, 1501–1519 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Desvillettes, L., Dolbeault, J.: On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Commun. Partial Differ. Equ. 16, 451–489 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.: Self-propelled particles with soft-core interactions: patterns, stability and collapse, Phys. Rev. Lett. (2006)

  26. Edelstein-Keshet, L.: Mathematical models of swarming and social aggregation, invited lecture. In: The 2001 International Symposium on Nonlinear Theory and its Applications (NOLTA 2001), Miyagi, Japan (Oct. 28–Nov. 1, 2001)

  27. Friedrich, B.M., Julicher, F.: Chemotaxis of sperm cells. Proc. Natl. Acad. Sci. USA 104, 13256–13261 (2007)

    Article  ADS  Google Scholar 

  28. Gautrais, J., Motsch, S., Jost, C., Soria, M., Campo, A., Fournier, R., Bianco, S., Théraulaz, G.: Analyzing fish movement as a persistent turning walker (in preparation)

  29. Golse, F., Poupaud, F.: Limite fluide des équations de Boltzmann des semiconducteurs pour une statistique de Fermi-Dirac. Asymptot. Anal. 6, 135–160 (1992)

    MathSciNet  MATH  Google Scholar 

  30. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 6th edn. Academic, New York (2000)

    Google Scholar 

  31. Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92, 025702 (2004)

    Article  ADS  Google Scholar 

  32. Gross, L.: Logarithmic Sobolev Inequalities and Contractivity Properties of Semigroups. Lectures Notes in Mathematics, vol. 1563. Springer, Berlin (1992), pp. 54–88

    Google Scholar 

  33. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  ADS  Google Scholar 

  34. Jeanson, R., Blanco, S., Fournier, R., Deneubourg, J.L., Fourcassié, V., Theraulaz, G.: A model of animal movements in a bounded space. J. Theor. Biol. 225, 443–451 (2003)

    Article  Google Scholar 

  35. Jost, C., et al.: From individual to collective ant displacements in heterogenous environments. J. Theor. Biol. 250, 424–434 (2008)

    Article  Google Scholar 

  36. Kulinskii, V.L., Ratushnaya, V.I., Zvelindovsky, A.V., Bedeaux, D.: Hydrodynamic model for a system of self-propelling particles with conservative kinematic constraints. Europhys. Lett. 71, 207–213 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. Lions, J.L.: Equations différentielles opérationnelles et problèmes aux limites. Springer, New York (1961)

    MATH  Google Scholar 

  38. Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38, 534–570 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47, 353–389 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Oksendal, B.: Stochastic Differential Equations. Springer, New York (1992)

    Google Scholar 

  41. Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: Chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Parrish, J.K., Viscido, S.V.: Traffic rules of fish schools: a review of agent-based approaches. In: Hemelrijk, C.K. (ed.) Self-Organization and Complexity. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  43. Parrish, J.K., Viscido, S.V., Grünbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202, 296–305 (2002)

    Article  Google Scholar 

  44. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    MATH  Google Scholar 

  45. Poupaud, F.: Diffusion approximation of the linear semiconductor equation: analysis of boundary layers. Asymptot. Anal. 4, 293–317 (1991)

    MathSciNet  MATH  Google Scholar 

  46. Ratushnaya, V.I., Bedeaux, D., Kulinskii, V.L., Zvelindovsky, A.V.: Collective behaviour of self propelling particles with kinematic constraints; the relations between the discrete and the continuous description. Physica A 381, 39–46 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  47. Ratushnaya, V.I., Kulinskii, V.L., Zvelindovsky, A.V., Bedeaux, D.: Hydrodynamic model for the system of self propelling particles with conservative kinematic constraints; two dimensional stationary solutions. Physica A 366, 107–114 (2006)

    Article  ADS  Google Scholar 

  48. Theraulaz, G., et al.: Spatial patterns in ant colonies. Proc. Natl. Acad. Sci. 99, 9645–9649 (2002)

    Article  ADS  MATH  Google Scholar 

  49. Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Topaz, C.M., Bertozzi, A.L., Lewis, M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68, 1601–1623 (2006)

    Article  MathSciNet  Google Scholar 

  51. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Motsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degond, P., Motsch, S. Large Scale Dynamics of the Persistent Turning Walker Model of Fish Behavior. J Stat Phys 131, 989–1021 (2008). https://doi.org/10.1007/s10955-008-9529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-008-9529-8

Keywords

Navigation