Skip to main content
Log in

Conformal Mappings and Dispersionless Toda Hierarchy II: General String Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article, we classify the solutions of the dispersionless Toda hierarchy into degenerate and non-degenerate cases. We show that every non-degenerate solution is determined by a function \({\mathcal{H}(z_1,z_2)}\) of two variables. We interpret these non-degenerate solutions as defining evolutions on the space \({\mathfrak{D}}\) of pairs of conformal mappings (g, f), where g is a univalent function on the exterior of the unit disc, f is a univalent function on the unit disc, normalized such that g (∞) = ∞, f (0) = 0 and f′(0)g′(∞) = 1. For each solution, we show how to define the natural time variables \({t_n, n\in\mathbb{Z}}\), as complex coordinates on the space \({\mathfrak{D}}\). We also find explicit formulas for the tau function of the dispersionless Toda hierarchy in terms of \({\mathcal{H}(z_1, z_2)}\). Imposing some conditions on the function \({\mathcal{H}(z_1, z_2)}\), we show that the dispersionless Toda flows can be naturally restricted to the subspace Σ of \({\mathfrak{D}}\) defined by \({f(w)=1/\overline{g(1/\bar{w})}}\). This recovers the result of Zabrodin (Theor Math Phy 12:1511–1525, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso L.M.: Genus-zero Whitham hierarchies in conformal-map dynamics. Phys. Lett. B. 641, 466–473 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  2. Alonso L.M., Medina E.: Solutions of the dispersionless Toda hierarchy constrained by string equations. J. Phys. A 37, 12005–12017 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Alonso L.M., Medina E.: Exact solutions of integrable 2D contour dynamics. Phys. Lett. B 610, 277–282 (2005)

    MathSciNet  ADS  Google Scholar 

  4. Alonso L.M., Medina E., Manas M.: String equations in Whitham hierarchies: tau-functions and Virasoro constraints. J. Math. Phys. 47, 083512 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  5. Bauer M., Bernard D.: 2D growth processes: SLE and Loewner chains. Phys. Rep. 432, 115–221 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bertola M.: Free energy of the two-matrix model/dToda tau-function. Nucl.Phys. B 669, 435–461 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Crowdy D.: The Benney hierarchy and the Dirichlet boundary problem in two dimensions. Phys. Lett. A 343, 319–329 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Agam O., Bettelheim E., Wiegmann P., Zabrodin A.: Viscous fingering and a shape of an electronic droplet in the Quantum Hall regime. Phys. Rev. Lett. 88, 236801 (2002)

    Article  ADS  Google Scholar 

  9. Alonso L.M., Medina E.: Exact solutions of integrable 2D, contour dynamics. Phys. Lett. B 610, 277–282 (2005)

    MathSciNet  ADS  Google Scholar 

  10. Abanov, Ar., Mineev-Weinstein, M., Zabrodin, A.: Multi-cuts solutions of Laplacian growth. http://arxiv.org/abs0812.2622v2[nlin.SI], 2009

  11. Kostov I.K.: String equation for string theory on a circle. Nucl. Phys. B 624, 146–162 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Kostov, I.K., Krichever, I.M., Mineev-Weinstein, M., Zabrodin, A., Wiegmann, P.B.: The τ-function for analytic curves. In: “Random Matrix Models and Their Applications”, Math. Sci. Res. Inst. Publ., Vol. 40, Cambridge: Cambridge Univ. Press, 2001, pp. 285–299

  13. Krichever I., Mineev-Weinstein M., Wiegmann P., Zabrodin A.: Laplacian Growth and Whitham Equations of Soliton Theory. Physica D 198, 1–28 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Krichever I., Marshakov A., Zabrodin A.: Integrable structure of the dirichlet boundary problem in multiply-connected domains. Commun. Math. Phys. 259, 1–44 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Marshakov A., Wiegmann P., Zabrodin A.: Integrable structure of the Dirichlet boundary problem in two dimensions. Commun. Math. Phys. 227(1), 131–153 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Mineev-Weinstein M., Wiegmann P.B., Zabrodin A.: Integrable structure of interface dynamics. Phys. Rev. Lett. 84, 5106–5109 (2000)

    Article  ADS  Google Scholar 

  17. Mineev-Weinstein M., Zabrodin A.: Whitham-Toda hierarchy in the Laplacian growth problem. J. Nonlin. Math. Phys. 8, 212–218 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Takasaki K.: Dispersionless Toda hierarchy and two-dimensional string theory. Commun. Math. Phys. 170(1), 101–116 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Takasaki K., Takebe T.: SDiff(2) Toda equation–hierarchy, tau function, and symmetries. Lett. Math. Phys. 23, 205–214 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Takasaki K., Takebe T.: Integrable hierarchies and dispersionless limit. Rev. Math. Phys. 7, 743–808 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Takhtajan L.A.: Free bosons and tau-functions for compact Riemann surfaces and closed smooth Jordan curves. Current correlation functions. Lett. Math. Phys. 56, 181–228 (2001)

    MATH  MathSciNet  Google Scholar 

  22. Teo L.P.: Analytic functions and integrable hierarchies—characterization of tau functions. Lett. Math. Phys. 64(1), 75–92 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Teo L.P.: Conformal mappings and dispersionless Toda hierarchy. Commun. Math. Phys. 292(2), 391–415 (2009)

    Article  MATH  ADS  Google Scholar 

  24. Teodorescu R., Bettelheim E., Agam O., Zabrodin A., Wiegmann P.: Normal random matrix ensemble as a growth problem. Nucl. Phys. B 704, 407–444 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Ueno, K., Takasaki, K.: Toda Lattice hierarchy. In: “Group Representations and Systems of Differential Equations”. Adv. Stud. Pure Math., Vol. 4, Amsterdam: North Holland, 1984, pp. 1–95

  26. Wiegmann P.B., Zabrodin A.: Conformal maps and integrable hierarchies. Commun. Math. Phys. 213, 523–538 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Wiegmann P.B., Zabrodin A.: Large scale correlations in normal and general non-Hermitian matrix ensembles. J. Phys. A 36, 3411–3424 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Zabrodin A.: Dispersionless limit of Hirota equations in some problems of complex analysis. Theor. Math. Phys. 12, 1511–1525 (2001)

    Article  MathSciNet  Google Scholar 

  29. Zabrodin A.: New applications of non-Hermitian random matrices. Ann. Henri Poincaré 4(2), S851–S861 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  30. Wiegmann, P.B., Zabrodin, A.: Large N Expansion for Normal and Complex Matrix Ensembles. In: “Frontiers in Number Theory, Physics, and Geometry I”. Berlin-Heidelberg: Springer, 2006, 213–229

  31. Zabrodin A.: Whitham hierarchy in growth problems. Theor. Math. Phys. 142, 166–182 (2005)

    MATH  MathSciNet  Google Scholar 

  32. Zabrodin, A.: Matrix models and growth processes: From viscous flows to the quantum Hall effect. In: “Applications of Random Matrices in Physics”, Nato Science Series, Series II: Mathematics, Physics and Chemistry, Vol. 221, Dordrecht: Springer, 2006, pp. 261–318

  33. Zabrodin A.: Growth processes related to the dispersionless Lax equations. Physica D 235, 101–108 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee-Peng Teo.

Additional information

Communicated by M. Aizenman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, LP. Conformal Mappings and Dispersionless Toda Hierarchy II: General String Equations. Commun. Math. Phys. 297, 447–474 (2010). https://doi.org/10.1007/s00220-010-1040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-010-1040-9

Keywords

Navigation