Skip to main content
Log in

Strominger–Yau–Zaslow Geometry, Affine Spheres and Painlevé III

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a gauge invariant characterisation of the elliptic affine sphere equation and the closely related Tzitzéica equation as reductions of real forms of \({SL(3, \mathbb{C})}\) anti–self–dual Yang–Mills equations by two translations, or equivalently as a special case of the Hitchin equation.

We use the Loftin–Yau–Zaslow construction to give an explicit expression for a six–real dimensional semi–flat Calabi–Yau metric in terms of a solution to the affine-sphere equation and show how a subclass of such metrics arises from 3rd Painlevé transcendents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Ramani, A., Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations of P-type. I, II. J. Math. Phys. 21, 715–721 and 1006–1015 (1980)

    Google Scholar 

  2. Baues O., Cortés V.: Proper Affine Hyperspheres which fiber over rojective Special Kähler Manifolds. Asian J. Math. 7, 115–132 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Bobenko, A.I., Eitner, U.: Painlevé Equations in the Differential Geometry of Surfaces. Lecture notes in Mathematics 1753, Springer-Verlag, Berlin, 2000

  4. Boldin A.Yu., Safin S.S., Sharipov R.A.: On an old article of Tzitzéica and the inverse scattering method. J. Math. Phys 34, 5801–5809 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Calabi, E.: Complete affine hyperspheres I. Symposia Mathematica, Vol X. pp. 19–38 London, Academic Press, 1972

  6. Cheng S.-Y., Yau S.-T.: Complete affine hyperspheres. Part I. The completeness of affine metrics. Commun Pure Appl Math. 39, 839–866 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dunajski M.: Hyper complex four manifolds from the Tzitzéica equation. J. Math. Phys. 43, 651–658 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Dunajski, M.: Solitons, Instantons and Twistors. Oxford Graduate Texts in Mathematics, Oxford University Press (ISBN 9780198570622), in Press, 2009

  9. Ferapontov E.V., Khusnutdinova K.R.: Hydrodynamic reductions of multi-dimensional dispersionless PDEs: the test for integrability. J. Math. Phys. 45, 2365–2377 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Gross, M., Siebert, B.: Affine manifolds, log structures, and mirror symmetry. Turkish J. Math. 27, 33–60 (2003); Mirror Symmetry via Logarithmic Degeneration Data I. J. Differ. Geom. 72, 169–338 (2006)

    Google Scholar 

  11. Gross M., Huybrechts D., Joyce D.: Calabi–Yau Manifolds and Related Geometries. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  12. Haase, C., Zharkov, I.: Integral affine structures on spheres and torus fibrations of Calabi-Yau toric hypersurfaces II. http://arxiv.orglabs/math/0301222v1[math.AG], 2003

  13. Hitchin N.J.: The Moduli space of special Lagrangian submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, 503–515 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ince E.L.: Ordinary Differential Equations. Dover, New York (1956)

    Google Scholar 

  16. Jimbo, M., Miwa, T.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II and III. Physica. 2D, 407–448 and 4D, 26–46 (1981)

  17. Kitaev A.V.: The Method of isomonodromic deformations for the ‘degenerate’ third Painlevé equation. J. Sov. Math. 46, 2077–2083 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Leung N.C.: Mirror symmetry without corrections. Comm. Anal. Geom. 13, 287–331 (2005)

    MATH  MathSciNet  Google Scholar 

  19. Loftin, J.: Survey of Affine Spheres. http://arxiv.org/abs/0809.1186v1[math.DG], 2008

  20. Loftin J., Yau S.T., Zaslow E.: Affine manifolds, SYZ geometry and the “Y” vertex. J. Diff. Geom. 71, 129–158 (2005)

    MATH  MathSciNet  Google Scholar 

  21. Manton N.S.: A remark on the scattering of BPS monopoles. Phys. Lett. B 100, 54–56 (1982)

    MathSciNet  ADS  Google Scholar 

  22. Mason L.J., Woodhouse N.M.J.: Integrability Self-Duality, and Twistor Theory. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  23. McIntosh I.: Special Lagrangian cones in \({\mathbb{C}^{3}}\) and primitive harmonic maps. J. London. Math. Soc. 67, 769–789 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mikhailov A.V.: The reduction problem and the inverse scattering method. Physica. 3D 1&2, 73–117 (1981)

    Google Scholar 

  25. Nomizu K., Sasaki T.: Affine Differential Geometry: Geometry of Affine Immersions. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  26. Okamoto K.: Studies on the Painlevé equations IV. Third Painlevé equation P III. Funkcial. Ekvac. 30, 305–332 (1987)

    MATH  MathSciNet  Google Scholar 

  27. Simon, U., Wang, C.P.: Local theory of affine 2-spheres, In: Proceedings of Symposia in Pure Mathematics 54, Providence, RI: Amer. Math. Soc., 1993, pp. 585–598

  28. Strominger A., Yau S.-T., Zaslow E.: Mirror symmetry is T-duality. Nucl. Phys. B 479, 243–259 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. Tzitzéica G.: Sur une nouvelle classe de surfaces. Rend. Circolo Mat. Palermo 25, 180–187 (1908)

    Article  MATH  Google Scholar 

  30. Tzitzéica G.: Sur une nouvelle classe de surfaces. C. R. Acad. Sci. Paris 150, 955–956 (1910)

    Google Scholar 

  31. Wang E.: Tzitzéica transformation is a dressing action. J. Math. Phys. 47, 053502 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Dunajski.

Additional information

Communicated by G. W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunajski, M., Plansangkate, P. Strominger–Yau–Zaslow Geometry, Affine Spheres and Painlevé III. Commun. Math. Phys. 290, 997–1024 (2009). https://doi.org/10.1007/s00220-009-0861-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0861-x

Keywords

Navigation