Skip to main content
Log in

Geometric Construction of the r-Map: From Affine Special Real to Special Kähler Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give an intrinsic definition of (affine very) special real manifolds and realise any such manifold M as a domain in affine space equipped with a metric which is the Hessian of a cubic polynomial. We prove that the tangent bundle N = TM carries a canonical structure of (affine) special Kähler manifold. This gives an intrinsic description of the r-map as the map \({M \mapsto N=TM}\) . On the physics side, this map corresponds to the dimensional reduction of rigid vector multiplets from 5 to 4 space-time dimensions. We generalise this construction to the case when M is any Hessian manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseevsky D.V., Cortés V., Devchand C., Van Proeyen A.: Flows on quaternionic-Kähler and very special real manifolds. Commun. Math. Phys. 238, 525–543 (2003)

    Article  MATH  ADS  Google Scholar 

  2. Baues O., Cortés V.: Realisation of special Kähler manifolds as parabolic spheres. Proc. Am. Math. Soc. 129(8), 2403–2407 (2001)

    Article  MATH  Google Scholar 

  3. Baues O., Cortés V.: Abelian simply transitive groups of symplectic type. Annales de l’Institut Fourier 52(6), 1729–1751 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Cortés V.: Special Kähler manifolds: a survey. Rend. Circ. Mat. Palermo (2) Suppl. no 66, 11–18 (2001)

    Google Scholar 

  5. Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry I: vector multiplets. J. High Energy Phys. 2004, no. 3, 028, 73 pp

  6. de Wit B., Van Proeyen A.: Special geometry, cubic polynomials and homogeneous quaternionic spaces. Commun. Math. Phys. 149, 307–333 (1992)

    Article  MATH  ADS  Google Scholar 

  7. Dillen F., Nomizu K., Vrancken L.: Conjugate connections and Radon’s theorem in affine differential geometry. Monatsh. Math 109, 221–235 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Günaydin M., Sierra G., Townsend P.K.: The geometry of \({\mathcal{N}=2}\) Maxwell-Einstein supergravity and Jordan algebras. Nucl. Phys. B 242, 244–268 (1984)

    Article  ADS  Google Scholar 

  9. Nomizu K., Sasaki T.: Affine differential geometry Cambridge. Tracts in Mathematics 111. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  10. Shima H.: Homogeneous Hessian manifolds. Ann. Inst. Fourier 30(3), 91–128 (1980)

    MATH  MathSciNet  Google Scholar 

  11. Shima H.: The geometry of Hessian structures. World Scientific Publishing, Hackensack, NJ (2007)

    MATH  Google Scholar 

  12. Shima H., Yagi K.: Geometry of Hessian manifolds. Diff. Geom. Appl. 7, 277–290 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cortés.

Additional information

Communicated by G.W. Gibbons

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseevsky, D.V., Cortés, V. Geometric Construction of the r-Map: From Affine Special Real to Special Kähler Manifolds. Commun. Math. Phys. 291, 579–590 (2009). https://doi.org/10.1007/s00220-009-0803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0803-7

Keywords

Navigation