Skip to main content
Log in

Extended Connection in Yang-Mills Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The three fundamental geometric components of Yang-Mills theory –gauge field, gauge fixing and ghost field– are unified in a new object: an extended connection in a properly chosen principal fiber bundle. To do this, it is necessary to generalize the notion of gauge fixing by using a gauge fixing connection instead of a section. From the equations for the extended connection’s curvature, we derive the relevant BRST transformations without imposing the usual horizontality conditions. We show that the gauge field’s standard BRST transformation is only valid in a local trivialization and we obtain the corresponding global generalization. By using the Faddeev-Popov method, we apply the generalized gauge fixing to the path integral quantization of Yang-Mills theory. We show that the proposed gauge fixing can be used even in the presence of a Gribov’s obstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Singer I.M.: Dirac operators coupled to vector potentials. Proc. National Acad. Sci. 81, 2597 (1984)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Baulieu L., Bellon M.: p-forms and Supergravity: Gauge symmetries in curved space. Nucl. Phys. B 266, 75 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. Baulieu L., Singer I.M.: Topological Yang-Mills symmetry. Nucl. Phys. 5(Proc. Suppl.), 12 (1988)

    MathSciNet  Google Scholar 

  4. Baulieu L., Thierry-Mieg J.: The principle of BRST symmetry: An alternative approach to Yang-Mills theories. Nucl. Phys. B 197, 477 (1982)

    Article  ADS  Google Scholar 

  5. Birmingham D., Blau M., Rakowski M., Thompson G.: Topological Field Theory. Phys. Rep. 209, 129 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bonora L., Cotta-Ramusino P.L.: Some remarks on BRS transformations, anomalies and the cohomology of the lie algebra of the group of gauge transformations. Commun. Math. Phys. 87, 589 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Choquet-Bruhat, Y., DeWitt-Morette, C.: Analysis, Manifolds and Physics. Part II: 92 Applications. New York: Elsevier Science Publishers B.V., 1989

  8. Cordes S., Moore G., Ramgoolam S.: Lectures on 2D Yang-Mills Theory, Equivariant Cohomology and Topological Field Theories. Nucl. Phys. 41(Proc Suppl.), 184 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Donaldson S.K., Kronheimer P.B.: The geometry of four-manifolds. Oxford University Press, Oxford (1990)

    MATH  Google Scholar 

  10. Dubois-Violette M.: The Weil-B.R.S. algebra of a Lie algebra and the anomalous terms in gauge theory. J. Geom. Phys. 3, 525 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Faddeev L., Slavnov A.: Gauge fields: An introduction to quantum theory. Second ed., Frontiers in Physics, Cambridge: Perseus Books, 1991

  12. Gribov V.: Quantization of non-Abelian gauge theories. Nucl. Phys. B 139, 1 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  13. Guillemin V., Sternberg S., Guillemin V.W.: Supersymmetry and equivariant de Rham theory. Berlin-Heidelberg-NewYork, Spinger-Verlag (1999)

    MATH  Google Scholar 

  14. Henneaux M.: Hamiltonian form of the path integral for theories with a gauge freedom. Phys. Rep. 126(1), 1 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. Henneaux M., Teitelboim C.: Quantization of gauge systems. Princeton Univ. Press, Princeton, NJ (1994)

    Google Scholar 

  16. Kobayashi S., Nomizu K.: Foundations of differential geometry. Vol. I. Wiley, New York (1963)

    Google Scholar 

  17. Kriegl, A., Michor, P.: it A convenient setting for global analysis. Mathematical Surveys and Monographs, Vol. 53, Amer. Math. Soc., 1997

  18. Michor, P.: Gauge theory for fiber bundles. Monographs and Textbooks in Physical Sciences, Lecture Notes 19, Napoli: Bibliopolis, 1991

  19. Narasimhan M.S., Ramadas T.R.: Geometry of SU(2) Gauge Fields. Commun. Math. Phys. 67, 121 (1979)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Singer I.: Some remarks on the Gribov Ambiguity. Commun. Math. Phys. 60, 7 (1978)

    Article  MATH  ADS  Google Scholar 

  21. Szabo R.: Equivariant cohomology and localization of path integrals. Springer-Verlag, Berlin-Heidelberg-NewYork (2000)

    MATH  Google Scholar 

  22. Thierry-Mieg J.: Geometrical reinterpretation of Faddeev-Popov ghost particles and BRS transformations. J. Math. Phys. 21, 2834 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  23. Witten E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Witten, E.: Dynamics of Quantum Field Theory. In: Quantum Fields and Strings: A course for mathematicians. Vol(2), Providence, RI: Amer. Math. Soc., (1999), pp. 1119–1424

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Catren.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catren, G., Devoto, J. Extended Connection in Yang-Mills Theory. Commun. Math. Phys. 284, 93–116 (2008). https://doi.org/10.1007/s00220-008-0608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0608-0

Keywords

Navigation