Skip to main content
Log in

Entanglement Entropy in Quantum Spin Chains with Finite Range Interaction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the entropy of entanglement of the ground state in a wide family of one-dimensional quantum spin chains whose interaction is of finite range and translation invariant. Such systems can be thought of as generalizations of the XY model. The chain is divided in two parts: one containing the first consecutive L spins; the second the remaining ones. In this setting the entropy of entanglement is the von Neumann entropy of either part. At the core of our computation is the explicit evaluation of the leading order term as L → ∞ of the determinant of a block-Toeplitz matrix with symbol

$$\Phi(z) = \left(\begin{array}{cc} i\lambda & g(z) \\ g^{-1}(z) & i \lambda \end{array}\right),$$

where g(z) is the square root of a rational function and g(1/z) = g −1(z). The asymptotics of such determinant is computed in terms of multi-dimensional theta-functions associated to a hyperelliptic curve \({\mathcal{L}}\) of genus g ≥ 1, which enter into the solution of a Riemann-Hilbert problem. Phase transitions for these systems are characterized by the branch points of \({\mathcal{L}}\) approaching the unit circle. In these circumstances the entropy diverges logarithmically. We also recover, as particular cases, the formulae for the entropy discovered by Jin and Korepin [14] for the XX model and Its, Jin and Korepin [12, 13] for the XY model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belokolos E.D., Bobenko A.I., Enolskii V.Z., Its A.R., Matveev V.B.: Algebro-geometric approach to nonlinear integrable equations. Springer series in nonlinear dynamics. Springer-Verlag, Berlin-Heidelberg-New York (1995)

    Google Scholar 

  2. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  3. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech. The. Exp., P06002 (2004)

  4. Calabrese, P., Cardy, J.: Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. The. Exp., P04010 (2005)

  5. Deift P.A.: Integrable operators. Amer. Math. Soc. Transl. (2) 189, 69–84 (1999)

    MathSciNet  Google Scholar 

  6. Farkas H.M., Kra I.: Riemann surfaces. Graduate Texts in Mathematics, 71. Springer-Verlag, New York-Berlin (1980)

    Google Scholar 

  7. Rauch H.E., Farkas H.M.: Theta functions with applications to Riemann surfaces. The Williams and Wilkins Co.,, Baltimore, MD (1974)

    MATH  Google Scholar 

  8. Fokas A.S., Xin Zhou.: On the solvability of Painlev II and IV. Commun. Math. Phys. 144(3), 601–622 (1992)

    Article  MATH  ADS  Google Scholar 

  9. Harnad J., Its A.R.: Integrable Fredholm operators and dual isomonodromic deformations. Comm. Math. Phys. 226, 497–530 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Holzhey C., Larsen F., Wilczek F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424, 443–467 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Its A.R., Izergin A.G., Korepin V.E., Slavnov N.A.: Differential equations for quantum correlation functions. Proceedings of the Conference on Yang-Baxter Equations, Conformal Invariance and Integrability in Statistical Mechanics and Field Theory. Int. J. Mod. Phys. B 4, 1003–1037 (1990)

    MATH  MathSciNet  Google Scholar 

  12. Its A.R., Jin B.Q., Korepin V.E.: Entanglement in the XY spin chain. J. Phys. A 38, 2975–2990 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Its, A.R., Jin, B.Q., Korepin, V.E.: Entropy of XY Spin Chain and Block Toeplitz Determinants. In: Filds Inst. Commun. Universality and Renormalization, I. Bender, D. Kneimer (eds.), Vol. 50, Providence, RI: Amer. Math. Soc., 2007, P. 151

  14. Jin B.Q., Korepin V.E.: Entanglement, Toeplitz determinants and Fisher-Hartwig conjecture. J. Stat. Phys. 116, 79–95 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Korepin V.E.: Universality of entropy scaling in 1D gap-less models. Phys. Rev. Lett. 92, 096402 (2004)

    Article  ADS  Google Scholar 

  16. Griffiths P., Harris J.: Principles of Algebraic Geometry. Wiley Interscience, New York (1978)

    MATH  Google Scholar 

  17. Lieb E., Schultz T., Mattis D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Keating J.P., Mezzadri F.: Random matrix theory and entanglement in quantum spin chains. Commun. Math. Phys. 242, 543–579 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Keating J.P., Mezzadri F.: Entanglement in quantum spin chains, symmetry classes of random matrices, and conformal field theory. Phys. Rev. Lett. 94, 050501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. Osterloh A., Amico L., Falci G., Fazio R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002)

    Article  ADS  Google Scholar 

  21. Peschel, I.: On the entanglement entropy for an XY spin chain. J. Stat. Mech. The. Exp., P12005 (2004)

  22. Osborne T.J., Nielsen M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. Vidal G., Latorre J.I., Rico E., Kitaev A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  24. Widom H.: Asymptotic behavior of block Toeplitz matrices and determinants. Adv. Math. 13, 284–322 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  25. Widom H.: On the limit of block Toeplitz determinants. Proc. Amer. Math. Soc. 50, 167–173 (1975)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mezzadri.

Additional information

Communicated by P. Sarnak

A. R. Its was partially supported by the NSF grants DMS-0401009 and DMS-0701768.

F. Mezzadri and M. Y. Mo acknowledge financial support by the EPSRC grant EP/D505534/1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Its, A.R., Mezzadri, F. & Mo, M.Y. Entanglement Entropy in Quantum Spin Chains with Finite Range Interaction. Commun. Math. Phys. 284, 117–185 (2008). https://doi.org/10.1007/s00220-008-0566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0566-6

Keywords

Navigation