Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 239))

Abstract

Motzkin and Fredkin spin chains are new spin chain models exhibiting extraordinary amount of entanglement entropy scaling as a square root of the volume in spite of local interactions. This is a distinguished feature of the models from other spin chains with entanglement of at most logarithmic scaling. We first compute generalized entanglement entropy, called as the Rényi entropy, of these models. The Rényi entropy has further importance, since it can provide the whole spectrum of an entangled subsystem. We find non-analytic behavior of the Rényi entropy that can be regarded as a phase transition never seen in any other spin chain investigated so far. This new phase transition indicates unique and rich structures of the entanglement spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although the analysis for the case \(r=0\) is already given in [20], we briefly present the derivation to make this article self-contained as much as possible.

References

  1. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  Google Scholar 

  2. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, Phys. Rev. D 34, 373 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Bravyi, L. Caha, R. Movassagh, D. Nagaj, P.W. Shor, Phys. Rev. Lett. 109, 207202 (2012)

    Article  ADS  Google Scholar 

  5. L. Caha, D. Nagaj, arXiv:1805.07168 [quant-ph]

  6. P. Calabrese, J. Cardy, J. Phys. A 42, 504005 (2009)

    Article  MathSciNet  Google Scholar 

  7. C.G. Callan Jr., F. Wilczek, Phys. Lett. B 333, 55 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  8. L. Dell’Anna, O. Salberger, L. Barbiero, A. Trombettoni, V.E. Korepin, Phys. Rev. B 94, 155140 (2016)

    Article  ADS  Google Scholar 

  9. J. Eisert, M. Cramer, M.B. Plenio, Rev. Mod. Phys. 82, 277 (2010) and arXiv:0808.3773 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  10. M.B. Hastings, J. Stat. Mech. Theory Exp. P08024 (2007)

    Google Scholar 

  11. C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B [FS] 424, 443–467 (1994)

    Google Scholar 

  12. V.E. Korepin, Phys. Rev. Lett. 92, 096402 (2004)

    Article  ADS  Google Scholar 

  13. R. Movassagh, J. Math. Phys. 58, 031901 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Movassagh, P.W. Shor, Proc. Natl. Acad. Sci. 113, 13278–13282 (2016)

    Article  Google Scholar 

  15. P. Padmanabhan, F. Sugino, V. Korepin, arXiv:1804.00978 [quant-ph]

  16. A. Rényi, Probability Theory (Elsevier, Amsterdam, 1970)

    MATH  Google Scholar 

  17. O. Salberger, V. Korepin, Rev. Math. Phys. 29, 1750031 (2017)

    Article  MathSciNet  Google Scholar 

  18. O. Salberger, T. Udagawa, Z. Zhang, H. Katsura, I. Klich, V. Korepin, J. Stat. Mech. Theory Exp. 1706, 063103 (2017)

    Article  Google Scholar 

  19. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Sugino, V. Korepin, Int. J. Mod. Phys. B 32(28), 1850306 (2018)

    Article  ADS  Google Scholar 

  21. F. Sugino, P. Padmanabhan, J. Stat. Mech. Theory Exp. 1801, 013101 (2018)

    Article  Google Scholar 

  22. Z. Zhang, A. Ahmadain, I. Klich, Proc. Natl. Acad. Sci. 114, 5142–5146 (2017)

    Google Scholar 

  23. Z. Zhang, I. Klich, J. Phys. A 50, 425201 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Sugino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sugino, F., Korepin, V. (2020). Generalized Entanglement Entropy in New Spin Chains. In: Ferraz, A., Gupta, K., Semenoff, G., Sodano, P. (eds) Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory. Springer Proceedings in Physics, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-030-35473-2_4

Download citation

Publish with us

Policies and ethics