Skip to main content
Log in

Gaussian Quantum Marginal Problem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The quantum marginal problem asks what local spectra are consistent with a given spectrum of a joint state of a composite quantum system. This setting, also referred to as the question of the compatibility of local spectra, has several applications in quantum information theory. Here, we introduce the analogue of this statement for Gaussian states for any number of modes, and solve it in generality, for pure and mixed states, both concerning necessary and sufficient conditions. Formally, our result can be viewed as an analogue of the Sing-Thompson Theorem (respectively Horn’s Lemma), characterizing the relationship between main diagonal elements and singular values of a complex matrix: We find necessary and sufficient conditions for vectors (d 1,..., d n ) and (c 1,..., c n ) to be the symplectic eigenvalues and symplectic main diagonal elements of a strictly positive real matrix, respectively. More physically speaking, this result determines what local temperatures or entropies are consistent with a pure or mixed Gaussian state of several modes. We find that this result implies a solution to the problem of sharing of entanglement in pure Gaussian states and allows for estimating the global entropy of non-Gaussian states based on local measurements. Implications to the actual preparation of multi-mode continuous-variable entangled states are discussed. We compare the findings with the marginal problem for qubits, the solution of which for pure states has a strikingly similar and in fact simple form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Higuchi A., Sudbery A. and Szulc J. (2003). One-qubit reduced states of a pure many-qubit state: polygon inequalities. Phys. Rev. Lett. 90: 107902

    Article  ADS  MathSciNet  Google Scholar 

  • Higuchi, H.: On the one-particle reduced density matrices of a pure three-qutrit quantum state. http://arxiv.org/list/quant-ph/0309186, 2003

  • Bravyi S. (2004). Compatibility between local and multipartite states. Quant. Inf. Comp. 4: 12–26

    MathSciNet  MATH  Google Scholar 

  • Han Y.-J., Zhang Y.-S. and Guo G.-C. (2005). Compatibility relations between the reduced and global density matrices Phys. Rev. A 71: 052306

    Article  Google Scholar 

  • Klyachko, A.: Quantum marginal problem and representations of the symmetric group. http://arxiv.org/list/quant-ph/0409113, 2004

  • Franz M. (2002). Moment polytopes of projective G-varieties and tensor products of symmetric group representations. J. Lie Theory 12: 539–549

    MathSciNet  MATH  Google Scholar 

  • Christandl M. and Winter A. (2004). Squashed entanglement: An additive entanglement measure. J. Math. Phys. 45: 829–840

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Terhal B.M., Koashi M. and Imoto N. (2003). Unconditionally secure key distribution based on two nonorthogonal states. Phys. Rev. Lett. 90: 167904

    Article  ADS  Google Scholar 

  • Nielsen M.A. and Kempe J. (2001). Separable states are more disordered globally than locally. Phys. Rev. Lett. 86: 5184–5187

    Article  ADS  Google Scholar 

  • Eisert J., Audenaert K. and Plenio M.B. (2003). Remarks on entanglement measures and non-local state distinguishability. J. Phys. A: Math. Gen. 36: 5605–5615

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Daftuar S. and Hayden P. (2005). Quantum state transformations and the Schubert calculus. Ann. Phys. 315: 80–122

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hall W. (2007). Compatibility of subsystem states and convex geometry. Phys. Rev. A 75: 032102

    Article  ADS  MathSciNet  Google Scholar 

  • Liu Y.-K., Christandl M. and Verstraete F. (2007). Quantum computational complexity of the N-Representability Problem: QMA Complete Phys. Rev. Lett. 98: 110503

    Article  ADS  Google Scholar 

  • Christandl M., Harrow A. and Mitchison G. (2007). On nonzero Kronecker coefficients and their consequences for spectra. Commun. Math. Phys. 270: 575–585

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Christandl, M.: PhD thesis, (Cambridge, October 2005)

  • Eisert J. and Plenio M.B. (2003). Introduction to the basics of entanglement theory in continuous-variable systems. Int. J. Quant. Inf. 1: 479–506

    Article  MATH  Google Scholar 

  • Braunstein S.L. and Loock P. (2005). Quantum information with continuous variables. Rev. Mod. Phys. 77: 513–577

    Article  ADS  Google Scholar 

  • Adesso G., Serafini A. and Illuminati F. (2007). Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states. New J. Phys. 9: 60

    Article  ADS  Google Scholar 

  • Adesso G., Serafini A. and Illuminati F. (2006). Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence. Phys. Rev. A 73: 032345

    Article  ADS  Google Scholar 

  • Sing F.Y. (1976). Some results on matrices with prescribed diagonal elements and singular values. Canad. Math. Bull. 19: 89–92

    MathSciNet  MATH  Google Scholar 

  • Thompson R.C. (1977). Singular values, diagonal elements and convexity. SIAM J. Appl. Math. 32: 39–63

    Article  MathSciNet  MATH  Google Scholar 

  • Thompson R.C. (1979). Singular values and diagonal elements of complex symmetric matrices. Lin. Alg. Appl. 26: 65–106

    Article  MATH  Google Scholar 

  • Horn A. (1954). Doubly stochastic matrices and the diagonal of a rotation matrix. Amer. J. Math. 76: 620–630

    Article  MathSciNet  MATH  Google Scholar 

  • Mirsky L. (1964). Inequalities and existence theorems in the theory of matrices. J. Math. Anal. Appl. 9: 99–118

    Article  MathSciNet  Google Scholar 

  • Hyllus P. and Eisert J. (2006). Optimal entanglement witnesses for continuous-variable systems. New J. Phys. 8: 51

    Article  ADS  Google Scholar 

  • Bhatia R. (1997). Matrix Analysis. Springer, Berlin, 254

    Google Scholar 

  • Hiroshima T. (2006). Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs. Phys. Rev. A 73: 012330

    Article  ADS  Google Scholar 

  • Botero A. and Reznik B. (2003). Modewise entanglement of Gaussian states. Phys. Rev. A 67: 052311

    Article  ADS  Google Scholar 

  • Giedke G., Eisert J., Cirac J.I. and Plenio M.B. (2003). Entanglement transformations of pure Gaussian states. Quant. Inf. Comp. 3: 211–223

    MathSciNet  MATH  Google Scholar 

  • Holevo A.S. and Werner R.F. (2001). Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63: 032312

    Article  ADS  Google Scholar 

  • Arvind Dutta B., Mukunda N. and Simon R. (1995). The real symplectic groups in quantum mechanics and optics. Pramana 45(6): 471–497

    Article  ADS  Google Scholar 

  • Adesso G., Serafini A. and Illuminati F. (2004). Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A 70: 022318

    Article  ADS  Google Scholar 

  • Reck M., Zeilinger A., Bernstein H.J. and Bertani P. (1994). Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73: 58–61

    Article  ADS  Google Scholar 

  • Holevo A.S. and Werner R.F. (2001). Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63: 032312

    Article  ADS  Google Scholar 

  • Eisert J. and Wolf M.M. (2007). Gaussian quantum channels. In: Cerf, N.J., Leuchs, G. and Polzik, E.J. (eds) Quantum Information with Continuous Variables of Atoms and Light, pp 23–42. Imperial College Press, London

    Google Scholar 

  • Eisert J., Scheel S. and Plenio M.B. (2002). Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89: 137903

    Article  ADS  MathSciNet  Google Scholar 

  • Fiurášek J. (2002). Gaussian transformations and distillation of entangled Gaussian states. Phys. Rev. Lett. 89: 137904

    Article  ADS  MathSciNet  Google Scholar 

  • Giedke G. and Cirac J.I. (2002). Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A 66: 032316

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Eisert.

Additional information

Communicated by M.B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisert, J., Tyc, T., Rudolph, T. et al. Gaussian Quantum Marginal Problem. Commun. Math. Phys. 280, 263–280 (2008). https://doi.org/10.1007/s00220-008-0442-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0442-4

Keywords

Navigation