Skip to main content
Log in

Free Energy of a Dilute Bose Gas: Lower Bound

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A lower bound is derived on the free energy (per unit volume) of a homogeneous Bose gas at density \(\varrho\) and temperature T. In the dilute regime, i.e., when \(a^3\varrho \ll 1\) , where a denotes the scattering length of the pair-interaction potential, our bound differs to leading order from the expression for non-interacting particles by the term \(4{\pi}a ( 2{\varrho^2}-[\varrho-\varrho_c]_+^2 )\) . Here, \(\varrho_c(T)\) denotes the critical density for Bose-Einstein condensation (for the non-interacting gas), and \([\, \cdot \, ]_+ = \max\{ \, \cdot\, , 0\}\) denotes the positive part. Our bound is uniform in the temperature up to temperatures of the order of the critical temperature, i.e., T ~ \(\varrho\) 2/3 or smaller. One of the key ingredients in the proof is the use of coherent states to extend the method introduced in [17] for estimating correlations to temperatures below the critical one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Berezin, F.A.: Covariant and contravariant symbols of operators. Izv. Akad. Nauk, Ser. Mat. 36, 1134–1167 (1972); English translation: USSR Izv. 6, 1117–1151 (1973); Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975)

    Google Scholar 

  2. Dyson F.J. (1957). Ground-State Energy of a Hard-Sphere Gas. Phys. Rev. 106: 20–26

    Article  MATH  ADS  Google Scholar 

  3. Hainzl C. and Seiringer R. (2002). General Decomposition of Radial Functions on \({\mathbb{R}}^n\) and Applications to N-Body Quantum SystemsLett. Math. Phys. 61: 75–84

    Article  MATH  MathSciNet  Google Scholar 

  4. Huang K. (1987). Statistical Mechanics 2nd ed. Wiley, New York

    MATH  Google Scholar 

  5. Lieb E.H. (1973). The classical limit of quantum spin systems. Commun. Math. Phys. 31: 327–340

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973); Lieb, E.H., Ruskai, M.B.: A Fundamental Property of Quantum Mechanical Entropy. Phys. Rev. Lett. 30, 434–436 (1973)

    Google Scholar 

  7. Lieb E.H., Seiringer R. and Solovej J.P. (2005). Ground State Energy of the Low Density Fermi Gas. Phys. Rev. A 71: 053605

    Article  ADS  Google Scholar 

  8. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Oberwolfach Seminars, Vol. 34, Basel-Boston: Birkhäuser, 2005

  9. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a Trap: A Rigorous Derivation of the Gross-Pitaevskii Energy Functional. Phys. Rev. A 61, 043602-1–13 (2000)

    Google Scholar 

  10. Lieb E.H., Seiringer R. and Yngvason J. (2005). Justification of c-Number Substitutions in Bosonic Hamiltonians. Phys. Rev. Lett. 94: 080401

    Article  ADS  Google Scholar 

  11. Lieb E.H. and Yngvason J. (1998). Ground State Energy of the Low Density Bose Gas. Phys. Rev. Lett. 80: 2504–2507

    Article  ADS  Google Scholar 

  12. Lieb E.H. and Yngvason J. (2001). The Ground State Energy of a Dilute Two-Dimensional Bose Gas. J. Stat. Phys. 103: 509–526

    Article  MATH  MathSciNet  Google Scholar 

  13. Ohya M. and Petz D. (2004). Quantum Entropy and Its Use, Texts and Monographs in Physics. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  14. Robinson D.W. (1971). The Thermodynamic Pressure in Quantum Statistical Mechanics. Springer Lecture Notes in Physics, Vol. 9. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  15. Ruelle D. (1999). Statistical Mechanics. Rigorous Results. OverEdge, World Scientific

    Google Scholar 

  16. Seiringer R. (2006). The Thermodynamic Pressure of a Dilute Fermi Gas. Commun. Math. Phys. 261: 729–758

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Seiringer R. (2006). A Correlation Estimate for Quantum Many-Body Systems at Positive Temperature. Rev. Math. Phys. 18: 233–253

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Seiringer.

Additional information

Communicated by I.M. Sigal.

Work partially supported by U.S. National Science Foundation grant PHY-0353181 and by an Alfred P. Sloan Fellowship.

© 2008 by the author. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiringer, R. Free Energy of a Dilute Bose Gas: Lower Bound. Commun. Math. Phys. 279, 595–636 (2008). https://doi.org/10.1007/s00220-008-0428-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0428-2

Keywords

Navigation