Skip to main content
Log in

A Centre-Stable Manifold for the Focussing Cubic NLS in \({\mathbb{R}}^{1+3}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider the focussing cubic nonlinear Schrödinger equation in \({\mathbb{R}}^3\) :

$$i\psi_t+\Delta\psi = -|\psi|^2 \psi. \quad (0.1) $$

It admits special solutions of the form e itα ϕ, where \(\phi \in {\mathcal{S}}({\mathbb{R}}^3)\) is a positive (ϕ > 0) solution of

$$-\Delta \phi + \alpha\phi = \phi^3. \quad (0.2)$$

The space of all such solutions, together with those obtained from them by rescaling and applying phase and Galilean coordinate changes, called standing waves, is the 8-dimensional manifold that consists of functions of the form \(e^{i(v \cdot + \Gamma)} \phi(\cdot - y, \alpha)\) . We prove that any solution starting sufficiently close to a standing wave in the \(\Sigma = W^{1, 2}({\mathbb{R}}^3) \cap |x|^{-1}L^2({\mathbb{R}}^3)\) norm and situated on a certain codimension-one local Lipschitz manifold exists globally in time and converges to a point on the manifold of standing waves. Furthermore, we show that \({\mathcal{N}}\) is invariant under the Hamiltonian flow, locally in time, and is a centre-stable manifold in the sense of Bates, Jones [BatJon]. The proof is based on the modulation method introduced by Soffer and Weinstein for the L 2-subcritical case and adapted by Schlag to the L 2-supercritical case. An important part of the proof is the Keel-Tao endpoint Strichartz estimate in \({\mathbb{R}}^3\) for the nonselfadjoint Schrödinger operator obtained by linearizing (0.1) around a standing wave solution. All results in this paper depend on the standard spectral assumption that the Hamiltonian

$$\mathcal H = \left ( \begin{array}{cc}\Delta + 2\phi(\cdot, \alpha)^2 - \alpha &\quad \phi(\cdot, \alpha)^2 \\ -\phi(\cdot, \alpha)^2 &\quad -\Delta - 2 \phi(\cdot, \alpha)^2 + \alpha \end{array}\right ) \quad (0.3)$$

has no embedded eigenvalues in the interior of its essential spectrum \((-\infty, -\alpha) \cup (\alpha, \infty)\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S. (1975). Spectral properties of Schrdinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2): 151–218

    MathSciNet  MATH  Google Scholar 

  2. Bates P.W. and Jones C.K.R.T. (1989). Invariant manifolds for semilinear partial differential equations. Dynamics Reported 2: 1–38

    MathSciNet  ADS  Google Scholar 

  3. Berestycki H. and Cazenave T. (1981). Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293(9): 489–492

    MathSciNet  MATH  Google Scholar 

  4. Berestycki H. and Lions P.L. (1983). Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rat. Mech. Anal. 82(4): 313–345

    MathSciNet  MATH  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Berlin-Heidelberg-New York: Springer-Verlag, 1976

  6. Buslaev, V.S., Perelman, G.S.: Scattering for the nonlinear Schrödinger equation: states that are close to a soliton (Russian). Algebra i Analiz 4(6), 63–102 (1992); translation in St. Petersburg Math. J. 4(6), 1111–1142 (1993)

  7. Buslaev, V.S., Perelman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. In: Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Providence, RI: Amer. Math. Soc. 1995, pp. 75–98

  8. Buslaev, V.S., Perelman, G.S.: Nonlinear scattering: states that are close to a soliton (Russian). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov, (POMI) 200 (1992), Kraev. Zadachi Mat. Fiz. Smezh. Voprosy Teor. Funktsii, 24, 38–50, 70, 187; translation in J. Math. Sci. 77(3), 3161–3169 (1995)

  9. Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc., 2003

  10. Cazenave T. and Lions P.L. (1982). Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85: 549–561

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Coffman C.V. (1972). Uniqueness of positive solutions of Δuu + u 3 = 0 and a variational characterization of other solutions. Arch. Rat. Mech. Anal. 46: 81–95

    Article  MathSciNet  MATH  Google Scholar 

  12. Cuccagna S. (2001). Stabilization of solutions to nonlinear Schrödinger equations. Comm. Pure Appl. Math. 54(9): 1110–1145

    Article  MathSciNet  MATH  Google Scholar 

  13. Cuccagna S., Pelinovsky D. and Vougalter V. (2005). Spectra of positive and negative energies in the linearized NLS problem. Comm. Pure Appl. Math. 58(1): 1–29

    Article  MathSciNet  MATH  Google Scholar 

  14. Demanet L. and Schlag W. (2006). Numerical verification of a gap condition for a linearized NLS equation. Nonlinearity 19: 829–852

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Erdogan, B., Schlag, W.: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II. To appear in Journal d’Analyse Mathematique, available at http://arxiv.org/list/math/0504585, 2005

  16. Gesztesy F., Jones C.K.R.T., Latushkin Y. and Stanislavova M. (2000). A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations. Indiana Univ. Math. J. 49(1): 221–243

    Article  MathSciNet  MATH  Google Scholar 

  17. Glassey R.T. (1977). On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys. 18: 1794–1797

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Grillakis M., Shatah J. and Strauss W. (1987). Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1): 160–197

    Article  MathSciNet  MATH  Google Scholar 

  19. Grillakis M., Shatah J. and Strauss W. (1990). Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(1): 308–348

    Article  MathSciNet  MATH  Google Scholar 

  20. Hundertmark D. and Lee Y.-R. (2007). Exponential decay of eigenfunctions and generalized eigenfunctions of a non self-adjoint matrix Schrödinger operator related to NLS. Bull. London Math. Soc. 39(5): 709–720

    Article  MathSciNet  MATH  Google Scholar 

  21. Keel M. and Tao T. (1998). Endpoint Strichartz estimates. Amer. Math. J. 120: 955–980

    Article  MathSciNet  MATH  Google Scholar 

  22. Kenig C. and Merle F. (2006). Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Inv. Math. 166(3): 645–675

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kelley P.L. (1965). Self-focusing of optical beams. Phys. Rev. Lett. 15: 1005–1008

    Article  ADS  Google Scholar 

  24. Krieger J. and Schlag W. (2006). Stable manifolds for all monic supercritical NLS in one dimension. J. AMS 19(4): 815–920

    MathSciNet  MATH  Google Scholar 

  25. Krieger, J., Schlag, W.: Non-generic blow-up solutions for the critical focusing NLS in 1-d. http://arxiv.org/list/math/0508576, 2005

  26. Krieger J. and Schlag W. (2007). On the focusing critical semi-linear wave equation. Amer. J. Math. 129(3): 843–913

    MathSciNet  MATH  Google Scholar 

  27. Kwong M.K. (1989). Uniqueness of positive solutions of Δuu + u p = 0 in \({\mathbb{R}}^n\) Arch. Rat. Mech. Anal. 65: 243–266

    MathSciNet  Google Scholar 

  28. McLeod K. and Serrin J. (1987). Nonlinear Schrödinger equation. Uniqueness of positive solutions of Δu + f (u) = 0 in \({\mathbb{R}}^n\) Arch. Rat. Mech. Anal. 99: 115–145

    MathSciNet  MATH  Google Scholar 

  29. Merle F. (1993). Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69(2): 427–454

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Merle F. and Raphael P. (2006). On a sharp lower bound on the blow-up rate for the L 2 critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19(1): 37–90

    Article  MathSciNet  MATH  Google Scholar 

  31. Perelman G. (2001). On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2(4): 605–673

    Article  MathSciNet  MATH  Google Scholar 

  32. Pillet C.A. and Wayne C.E. (1997). Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations. J. Diff. Eq. 141(2): 310–326

    Article  MathSciNet  MATH  Google Scholar 

  33. Rodnianski I. and Schlag W. (2004). Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3): 451–513

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Rodnianski I., Schlag W. and Soffer A. (2004). Dispersive analysis of charge transfer models. Comm. Pure and Appl. Math. 58(2): 149–216

    Article  MathSciNet  Google Scholar 

  35. Rodnianski, I., Schlag, W., Soffer, A.: Asymptotic stability of N-soliton states of NLS. http://arxiv.org/list/math/0309114, 2003

  36. Schlag, W.: Stable Manifolds for an orbitally unstable NLS. http://arxiv.org/list/math/0405435 , 2004

  37. Schlag W. (2006). Spectral theory and nonlinear partial differential equations: a survey. Discrete Contin. Dyn. Syst. 15(3): 703–723

    Article  MathSciNet  MATH  Google Scholar 

  38. Soffer A. and Weinstein M.I. (1990). Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys. 133: 119–146

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Soffer A. and Weinstein M.I. (1992). Multichannel nonlinear scattering, II. The case of anisotropic potentials and data. J. Diff. Eq. 98: 376–390

    MathSciNet  MATH  Google Scholar 

  40. Stein E. (1994). Harmonic Analysis. Princeton University Press, Princeton, NJ

    Google Scholar 

  41. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences, 139, New York: Springer-Verlag, 1999

  42. Taylor, M.E.: Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials. Mathematical Surveys and Monographs, 81, Providence, RI: Amer. Math. Soc., 2000

  43. Weinstein M.I. (1986). Lyapunov stability of ground states of nonlinear dispersive equations. Comm. Pure Appl. Math. 39(1): 51–67

    Article  MathSciNet  MATH  Google Scholar 

  44. Weinstein M.I. (1985). Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3): 472–491

    Article  MathSciNet  MATH  Google Scholar 

  45. Yajima K. (2005). Dispersive estimate for Schrödinger equations with threshold resonance and eigenvalue. Commun. Math. Phys. 259(2): 475–509

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Beceanu.

Additional information

Communicated by P. Constantin

This work is part of the author’s Ph. D. thesis at the University of Chicago.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beceanu, M. A Centre-Stable Manifold for the Focussing Cubic NLS in \({\mathbb{R}}^{1+3}\) . Commun. Math. Phys. 280, 145–205 (2008). https://doi.org/10.1007/s00220-008-0427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0427-3

Keywords

Navigation