Skip to main content
Log in

Quantum Conjugacy Classes of Simple Matrix Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let G be a simple complex classical group and \(\mathfrak{g}\) its Lie algebra. Let \(\mathcal{U}_\hbar(\mathfrak{g})\) be the Drinfeld-Jimbo quantization of the universal enveloping algebra \(\mathcal{U}(\mathfrak{g})\). We construct an explicit \(\mathcal{U}_\hbar(\mathfrak{g})\)-equivariant quantization of conjugacy classes of G with Levi subgroups as the stabilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev A., Malkin A.Z. (1994). Symplectic Structures Associated to Lie-Poisson groups. Commun. Math. Phys. 162: 147–173

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. De Concini, C., Kac, V.: Representation of quantum groups at roots of 1. In: Operator algebras, unitary representations, enveloping algebras, and invariant theory. Prog. Math. 92, Basel-Boston:Birkhäuser, 1990 pp. 471–506

  3. Drinfeld, V.: Quantum Groups. In: Proc. Int. Congress of Mathematicians, Berkeley, 1986, ed. A. V. Gleason, Providence, RI: AMS, 1987 pp. 798–820

  4. Drinfeld, V.: Almost cocommutative Hopf algebras. Leningrad Math. J. 1, # 2, 321–342 (1990)

    Google Scholar 

  5. Drinfeld V. (1990). Quasi-Hopf Algebras. Leningrad Math. J. 1: 1419–1457

    MathSciNet  Google Scholar 

  6. Donin, J., Gurevich, D., Shnider, S.: Quantization of function algebras on semisimple orbits in \({\mathfrak{g}^*}\) . http://arxiv.org/list/q-alg/9607008, 1996

  7. Donin, J., Kulish, P.P., Mudrov, A.: On a universal solution to reflection equation. Lett. Math. Phys. 63, # 3, 179–194 (2003)

    Google Scholar 

  8. Donin J., Mudrov A. (2005) Dynamical Yang-Baxter equation and quantum vector bundles. Commun. Math. Phys. 254, 719–760

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Donin J. and Mudrov A. (2002). Explicit Equivariant Quantization on Coadjoint Orbits of \({GL(n,\mathbb{C})}\) Lett. Math. Phys. 62: 17–32

    Article  MATH  MathSciNet  Google Scholar 

  10. Donin J., Mudrov A. (2003). Reflection Equation, Twist and Equivariant Quantization. Isr. J. Math. 136: 11–28

    MATH  MathSciNet  Google Scholar 

  11. Enriquez B., Etingof P. (2005). Quantization of classical dynamical r-matrices with nonabelian base. Commun. Math. Phys. 254: 603–650

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Enriquez, B., Etingof, P., Marshall, I.: Quantization of some Poisson-Lie dynamical r-matrices and Poisson homogeneous spaces. http://arxiv.org/list/math.QA/0403283, 2004

  13. Fiore G. (2004). Quantum group covariant (anti) symmetrizers, ε-tensors, vielbein, Hodge map adn Laplacian. J. Phys. A Math. Gen. 37: 9175–9193

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Faddeev L., Reshetikhin N., Takhtajan L. (1990). Quantization of Lie groups and Lie algebras. Leningrad Math. J. 1: 193–226

    MATH  MathSciNet  Google Scholar 

  15. Gupta, R.K.: Copies of the adjoint representation inside induced ideals. Preprint, 1985, Paris

  16. Gurevich, D., Saponov, P.: Geometry of non-commutative orbits related to Hecke symmetries. http:// arxiv.org/list/math.QA/0411579, 2004

  17. Gould M., Zhang R., Braken A. (1991). Generalized Gel’fand invariants and characteristic identities for Quantum Groups. J. Math. Phys. 32: 2298–2303

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Jantzen J.C. (1977). Kontravariante formen und Induzierten Darstellungen halbeinfacher Lie-Algebren. Math. Ann. 226: 53–65

    Article  MATH  MathSciNet  Google Scholar 

  19. Jantzen, J.C.: Lectures on quantum groups. Grad. Stud. in Math. 6, Providence, RI: Amer. Math. Soc. 1996

  20. Jimbo M. (1985). A q-difference analogue of u(g) and the Yang-Baxter equation. Lett. Math. Phys. 10: 63–69

    Article  MATH  MathSciNet  Google Scholar 

  21. Joseph A. (1995). Quantum groups and their primitive ideals. Springer-Verlag, Berlin

    MATH  Google Scholar 

  22. Joseph A. (1987). A criterion for an ideal to be induced. J. Algebra 110: 480–497

    Article  MATH  MathSciNet  Google Scholar 

  23. Joseph A., Todoroic D. (2002). On the quantum KPRV determinants for semisimple and affine Lie algebras. Alg. Rep. Theor. 5: 57–99

    Article  MATH  Google Scholar 

  24. Kostant B. (1975). On the tensor product of a finite and an infinite dimensional representation. J. Funct. Anal. 20: 257–285

    Article  MATH  MathSciNet  Google Scholar 

  25. Kébé M. (1996). \({\mathcal{O}}\)-algébres quantiques C. R. Acad. Sci. Paris Sr. I Math. 322: 1–4

    MATH  Google Scholar 

  26. Khoroshkin S., Tolstoy V. (1991). Universal r-matrix for quantized (super) algebras. Commun. Math. Phys. 141: 599–617

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Kulish P.P., Sklyanin E.K. (1992). Algebraic structure related to the reflection equation. J. Phys. A 25: 5963–6975

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Lusztig, G.: Introduction to quantum groups. Prog. Math. 110, Boston, MA:Bikhäuser, 1993.

  29. Mudrov, A.: On quantization of Semenov-Tian-Shansky Poisson bracket on simple algebraic groups. Alg. & Anal. 5, # 5, 156–172 (2006)

  30. Mudrov, A., Ostapenko, V.:Quantization of orbit bundles in gl(n)*. In preparation

  31. Naimark, M.: Teoriya predstavlenii grupp. (Russian) [Representation theory of groups], Moscow, 1976

  32. Richardson, R.: An application of the Serre conjecture to semisimple algebraic groups. Lect. Notes in Math. 848, New York:Springer, 141–151 (1981)

  33. Radford D. (1985). The structure of Hopf algebras with a projection. J. Alg. 92: 322–347

    Article  MATH  MathSciNet  Google Scholar 

  34. Reshetikhin N.Yu., Semenov-Tian-Shansky M.A. (1988). Quantum R-Matrices and Factorization Problem. J. Geom. Phys. 5: 533–550

    Article  MATH  MathSciNet  Google Scholar 

  35. Springer, T.: Conjugacy classes in algebraic groups. Lect. Notes in Math. 1185, Berlin:Springer, pp. 175–209 (1984)

  36. Semenov-Tian-Shansky M. (1994). Poisson-Lie Groups, Quantum Duality Principle and the Quantum Double. Contemp. Math. 175: 219–248

    MathSciNet  Google Scholar 

  37. Vinberg, E., Onishchik, A.: Seminar po gruppam Li i algebraicheskim gruppam. (Russian) [A seminar on Lie groups and algebraic groups], Moscow, 1988

  38. Weyl, H.: The classical groups. Their Invariants and representations, Princeton, NJ:Princeton Univ. Press, 1966

  39. Yetter, D.: Quantum groups and representations of monoidal categories. Math. Proc. Cambridge Philos. Soc. 108, # 2, 261–290 (1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mudrov.

Additional information

Communicated by L. Takhtajan

Dedicated to the memory of Joseph Donin

This research is partially supported by the Emmy Noether Research Institute for Mathematics, the Minerva Foundation of Germany, the Excellency Center “Group Theoretic Methods in the study of Algebraic Varieties” of the Israel Science foundation, by the EPSRC grant C511166, and by the RFBR grant no. 06-01-00451.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudrov, A. Quantum Conjugacy Classes of Simple Matrix Groups. Commun. Math. Phys. 272, 635–660 (2007). https://doi.org/10.1007/s00220-007-0222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0222-6

Keywords

Navigation