Skip to main content
Log in

Homotopy Algebras Inspired by Classical Open-Closed String Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define a homotopy algebra associated to classical open-closed strings. We call it an open-closed homotopy algebra (OCHA). It is inspired by Zwiebach's open-closed string field theory and also is related to the situation of Kontsevich's deformation quantization. We show that it is actually a homotopy invariant notion; for instance, the minimal model theorem holds. Also, we show that our open-closed homotopy algebra gives us a general scheme for deformation of open string structures (A -algebras) by closed strings (L -algebras).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, M., Kontsevich, M., Schwartz, A., Zaboronsky, O.: The Geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Alekseev, A., Meinrenken, E.: Equivariant cohomology and the Maurer-Cartan equation. Duke Mathematical Journal, 130(3), 479–522 (2005)

    Article  Google Scholar 

  3. Barannikov, S., Kontsevich, M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. Internat. Math. Res. Notices 1998, no. 4, 201–215

  4. Cartan, H.: Notions d'algébre difféntielle; application aux groupes de Lie et aux variétés oú opére un groupe de Lie (French). In: Colloque de topologie (espaces fibrés), Bruxelles, 1950, Liége: Georges Thone, Paris: Masson et Cie., 1951, pp 15–27

  5. Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula. Commun. Math. Phys. 212, 591–611 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Cohen, F.R.: The homology of C n+1-spaces, n≥0. In: The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Berlin-New York: Springer-Verlag, 1976

  7. Deligne, D.: Letter to W. M. Goldman, J. J. Millson

  8. Doran, C.F., Wong, S.: Deformation Theory: An Historical Annotated Bibliography. In: Deformation of Galois Representations, Chap. 2, to appear in the AMS-IP Studies in Advanced Mathematics Series

  9. Flato, M., Gerstenhaber, M., Voronov, A.A.: Cohomology and deformation of Leibniz pairs. Lett. Math. Phys. 34, no. 1, 77–90 (1995)

    Google Scholar 

  10. Fukaya, K.: Deformation theory, Homological Algebra, and Mirror symmetry. In: Geometry and physics of branes, U. Bruzzo, V. Gorinu, U. Moschelli, eds., Bristol-Philadelphia: Inst. of Phys. Publishing, 2002, pp. 121–210

  11. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory-anomaly and obstruction. To appear, International Press

  12. Gaberdiel, M.R., Zwiebach, B.: Tensor constructions of open string theories I: Foundations. Nucl. Phys. B 505, 569 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963); On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  14. Getzler, E.: Batalin-Vilkovisky algebras and two-dimensional topological field theories. Commun. Math. Phys. 159, 265 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Getzler, E.: Lie theory for nilpotent L-infinity algebras. http://arxiv.org/list/math.AT/0404003, 2004

  16. Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces. Preprint, Department of Mathematics, MIT, March 1994, http://arxiv.org/list/hep-th/9403055, 1994

  17. Getzler, E., Kapranov, M.M.: Cyclic operads and cyclic homology. In: Geometry, topology, & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Cambridge, MA: Internat. Press, 1995, pp. 167–201

  18. Goldman, W.M., Millson, J.J.: The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Études Sci. Publ. Math. No. 67, 43–96 (1988); The homotopy invariance of the Kuranishi space. Illinois J. Math. 34, no. 2, 337–367 (1990)

    MATH  Google Scholar 

  19. Gugenheim, V.K.A.M.: On a perturbation theory for the homology of the loop-space. J. Pure Appl. Algebra 25, 197–205 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gugenheim, V.K.A.M., Stasheff, J.D.: On perturbations and A -structures. Bull. Soc. Math. Belg. Sér. A 38, 237–246 (1986)

    MATH  MathSciNet  Google Scholar 

  21. Gugenheim, V.K.A.M., Lambe, L.A.: Perturbation theory in differential homological algebra. I. Illinois J. Math. 33, no. 4, 566–582 (1989)

    Google Scholar 

  22. Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Algebraic aspects of Chen's twisting cochain. Illinois J. Math. 34, no. 2, 485–502 (1990)

    Google Scholar 

  23. Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in differential homological algebra II. Illinois J. Math. 35, no. 3, 357–373 (1991)

    Google Scholar 

  24. Harrelson, E.: On the homology of open/closed string theory. http://arxiv.org/list/math.AT/0412249, 2004

  25. Hofman, C., Ma, W.K.: Deformations of topological open strings. JHEP 0101, 035 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hofman, C.: On the open-closed B-model. JHEP 0311, 069 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207, 245–280 (1991)

    MATH  MathSciNet  Google Scholar 

  28. Huebschmann, J., Stasheff, J.: Formal solution of the Master Equation via HPT and deformation theory. Forum Mathematicum, 14, 847–868 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kadeishvili, T.V.: The algebraic structure in the homology of an A(∞ )-algebra. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 108, no. 2, 249–252 (1982)

  30. Kajiura, H.: Homotopy algebra morphism and geometry of classical string field theories. Nucl. Phys. B 630, 361 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  31. Kajiura, H.: Noncommutative homotopy algebras associated with open strings. Doctoral thesis, Graduate School of Mathematical Sciences, Univ. of Tokyo, http://arxiv.org/list/math.QA/0306332, 2003

  32. Kajiura, H., Stasheff, J.: Open-closed homotopy algebra in mathematical physics. J. Math. Phys. 47, 023506 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. Kajiura, H., Terashima, Y.: Homotopy equivalence of A -morphisms and gauge transformations. Preprint, 2003

  34. Kimura, T., Stasheff, J., Voronov, A.A.: On operad structures of moduli spaces and string theory. Commun. Math. Phys. 171, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  35. Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, Vol. 1 (Zürich, 1994), Basel, Birkhäuser: 1995, pp. 120–139

  36. Kontsevich, M.: Deformation quantization of Poisson manifolds, I. Lett. Math. Phys. 66, 157–216 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. Symplectic geometry and mirror symmetry (Seoul, 2000), 203–263, World Sci. Publishing, River Edge, NJ, 2001

  38. Lada, T., Markl, M.: Strongly homotopy Lie algebras. Comm. in Algebra 23, 2147–2161 (1995)

    MATH  MathSciNet  Google Scholar 

  39. Lada, T., Stasheff, J.: Introduction to sh Lie algebras for physicists. Internat. J. Theoret. Phys. 32, 1087–1103 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Lefèvre-Hasegawa, K.: Sur les A -catégories. http://arxiv.org/list/math.CT/0310337, 2003

  41. Markl, M.: Distributive laws and Koszulness. Ann. Inst. Fourier (Grenoble), 46(4), 307–323, (1996)

    MathSciNet  Google Scholar 

  42. Markl, M.: Homotopy algebras are homotopy algebras. Forum Mathematicum 16(1), 129–160 (2004)

    Article  MathSciNet  Google Scholar 

  43. Markl, M.: Private communication, 2003

  44. Markl, M., Shnider, S., Stasheff, J.: Operads in algebra, topology and physics. In: Mathematical Surveys and Monographs 96. Providence, RI: Amer. Math. Soc., 2002. x+349 pp.

  45. Merkulov, S.A.: Strong homotopy algebras of a Kähler manifold. Internat. Math. Res. Notices 1999, no. 3, 153–164,

  46. Nakatsu, T.: Classical open-string field theory: A(infinity)-algebra, renormalization group and boundary states. Nucl. Phys. B 642, 13 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Schlessinger, M., Stasheff, J.: Deformaion theory and rational homotopy type. U. of North Carolina preprint, 1979; short version: The Lie algebra structure of tangent cohomology and deformation theory. J. Pure Appl. Alg. 38, 313–322 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schuhmacher, F.: Deformation of L -Algebras. http://arxiv.org/list/math.QA/0405485, 2004

  49. Stasheff, J.D.: On the homotopy associativity of H-spaces, I, II. Trans. Amer. Math. Soc. 108, 275, 293 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  50. Stasheff, J.: Constrained Poisson algebras and strong homotopy representations. Bull. Amer. Math. Soc. (N.S.) 19, 287–290 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  51. Stasheff, J.D.: The intrinsic bracket on the deformation complex of an associative algebra. JPAA 89, 231–235 (1993); Festschrift in Honor of Alex Heller

    MATH  MathSciNet  Google Scholar 

  52. Stasheff, J.: Closed string field theory, strong homotopy Lie algebras and the operad actions of moduli spaces. In: Perspectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys. III, Cambridge, MA: Internat. Press, 1994, pp. 265–288

  53. Sullivan, D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. No. 47, 269–331 (1977)

    MATH  MathSciNet  Google Scholar 

  54. Sullivan, D.: Open and closed string field theory interpreted in classical algebraic topology. In: Topology, geometry and quantum field theory, London Math. Soc. Lecture Note Ser. 308, Cambridge: Cambridge Univ. Press, 2004, pp. 344–357

  55. Tradler, T.: Infinity-Inner-Products on A-Infinity-Algebras. http://arxiv.org/list/math.AT/0108027, 2001

  56. Tradler, T.: The BV Algebra on Hochschild Cohomology Induced by Infinity Inner Products.http://arxiv.org/list/math.QA/0210150, 2002

  57. van der Laan, P.: Coloured Koszul duality and strongly homotopy operads. http://arxiv.org/list/math.QA/0312147, 2003

  58. Voronov, A.: The Swiss-cheese operad. In: Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math. 239, Providence, RI: Amer. Math. Soc., 1999, pp. 365–373

  59. Witten, E.: Chern-Simons gauge theory as a string theory. Prog. Math. 133, 637–678 (1995)

    MATH  MathSciNet  Google Scholar 

  60. Zwiebach, B.: Closed string field theory: Quantum action and the B-V master equation. Nucl. Phys. B 390, 33 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  61. Zwiebach, B.: Oriented open-closed string theory revisited. Ann. Phys. 267, 193 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshige Kajiura.

Additional information

Communicated by L. Takhtajan

H. K is supported by JSPS Research Fellowships for Young Scientists.

J. S. is supported in part by NSF grant FRG DMS-0139799 and US-Czech Republic grant INT-0203119.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiura, H., Stasheff, J. Homotopy Algebras Inspired by Classical Open-Closed String Field Theory. Commun. Math. Phys. 263, 553–581 (2006). https://doi.org/10.1007/s00220-006-1539-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-1539-2

Keywords

Navigation