Skip to main content
Log in

Mott Transition in Lattice Boson Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We use mathematically rigorous perturbation theory to study the transition between the Mott insulator and the conjectured Bose-Einstein condensate in a hard-core Bose-Hubbard model. The critical line is established to lowest order in the tunneling amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M., Lieb E.H., Seiringer R., Solovej J.P., Yngvason J. (2004). Bose-Einstein quantum phase transition in an optical lattice model. Phys. Rev. A 70:023612; see also cond-mat/0412034; see also http:// arxiv.org/list/cond-mat/0412034, 2004

    Article  ADS  Google Scholar 

  2. Batrouni G.G., Assaad F.F., Scalettar R.T., Denteneer P.J.H. (2005). Dynamic response of trapped ultracold bosons on optical lattices. Phys. Rev. A 72:031601(R)

    Article  ADS  Google Scholar 

  3. Borgs C., Kotecký R., Ueltschi D. (1996). Low temperature phase diagrams for quantum perturbations of classical spin systems. Commun. Math. Phys. 181:409–446

    Article  ADS  MATH  Google Scholar 

  4. Bru J.-B., Dorlas T.C. (2003). Exact solution of the infinite-range-hopping Bose-Hubbard model. J. Stat. Phys. 113:177–196

    Article  MathSciNet  MATH  Google Scholar 

  5. Datta N., Fernández R., Fröhlich J. (1996). Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84:455–534

    Article  ADS  MATH  Google Scholar 

  6. Datta N., Fernández R., Fröhlich J., Rey-Bellet L. (1996). Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracy. Helv. Phys. Acta. 69:752–820

    MathSciNet  MATH  Google Scholar 

  7. Dyson F.J., Lieb E.H., Simon B. (1978). Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18:335–383

    Article  ADS  MathSciNet  Google Scholar 

  8. Elstner N., Monien H. (1999). Dynamics and thermodynamics of the Bose-Hubbard model. Phys. Rev. B 59:12184–12187

    Article  ADS  Google Scholar 

  9. Fisher M.P.A., Weichman P.B., Grinstein G., Fisher D.S. (1989). Boson localization and the superfluid-insulator transition. Phys. Rev. B 40:546–570

    Article  ADS  Google Scholar 

  10. Freericks J.K., Monien H. (1996). Strong-coupling expansions for the pure and disordered Bose-Hubbard model. Phys. Rev. B 53:2691–2700

    Article  ADS  Google Scholar 

  11. Fröhlich J., Simon B., Spencer T. (1976). Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50:79–95

    Article  ADS  Google Scholar 

  12. Greiner M., Mandel O., Esslinger T., Hänsch T.W., Bloch I. (2002). Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415:39–44

    Article  ADS  Google Scholar 

  13. Kennedy T. (1985). Long range order in the anisotropic quantum ferromagnetic Heisenberg model. Commun. Math. Phys. 100:447–462

    Article  ADS  Google Scholar 

  14. Kennedy T., Lieb E.H., Shastry B.S. (1988). The X-Y model has long-range order for all spins and all dimensions greater than one. Phys. Rev. Lett. 61:2582–2584

    Article  ADS  Google Scholar 

  15. Kölh M., Moritz H., Stöferle T., Schori C., Esslinger T. (2005). Superfluid to Mott insulator transition in one, two, and three dimensions. J. Low Temp. Phys. 138:635

    Article  ADS  Google Scholar 

  16. Kotecký R., Ueltschi D. (1999). Effective interactions due to quantum fluctuations. Commun. Math. Phys. 206:289–335

    Article  ADS  MATH  Google Scholar 

  17. Lieb E.H., Seiringer R., Solovej J.P., Yngvason J. (2005). The mathematics of the Bose gas and its condensation. Oberwohlfach Seminars, Basel Birkhäuser,

  18. Messager A., Miracle-Solé S. (1996). Low temperature states in the Falicov-Kimball model. Rev. Math. Phys. 8:271–99

    Article  MathSciNet  MATH  Google Scholar 

  19. Schmid G., Todo S., Troyer M., Dorneich A. (2002). Finite-temperature phase diagram of hard-core bosons in two dimensions. Phys. Rev. Lett. 88:167208

    Article  ADS  Google Scholar 

  20. Ueltschi D. (2004). Cluster expansions and correlation functions. Moscow Math. J. 4:511–522

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fernández.

Additional information

Communicated by M. Aizenman

Collaboration supported in part by the Swiss National Science Foundation under grant 2-77344-03.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, R., Fröhlich, J. & Ueltschi, D. Mott Transition in Lattice Boson Models. Commun. Math. Phys. 266, 777–795 (2006). https://doi.org/10.1007/s00220-006-0038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0038-9

Keywords

Navigation