Skip to main content
Log in

Characterization, components, and chemical structure of a novel natural pigments derived from Streptomyces tauricus

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Microbial pigments have extensive applications in the food, cosmetic, and biopharmaceutical industries. In this study, a pigment-rich actinomycete identified as Streptomyces tauricus was isolated from soil, and the solubility and stability of its were investigated. The pigment was separated and purified through thin-layer chromatography (TLC), column chromatography, and high performance liquid chromatography (HPLC) to determine its components. The chemical structure of the pigment was characterized through infrared (IR) spectroscopy, gas chromatography-mass spectrometry (GC–MS), tandem mass spectrometry (MS/MS–MS), and nuclear magnetic resonance (NMR). Additionally, the antioxidant properties and safety profile of the pigment were assessed. The S. tauricus pigment was bright, vivid brownish-red, intracellular, and fat-soluble; it exhibited considerable photothermal stability and maintained its color below pH 7. The presence of Cu2+, Fe2+, and Fe3+ ions markedly influenced the pigment’s characteristics. The pigment comprised primarily purple and orange components. The purple component, which is relatively rare in microbial sources, was subjected to detailed study. The core structure of the purple component was identified as methylbenzanthracene dione, which has high antioxidant activity and no toxicity in brine shrimp assays. Due to its resilience to high temperatures and acidic environments, coupled with its bioactivity and lack of toxicity, this pigment may serve as a promising candidate for various industrial and food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Gondil VS, Asif M, Bhalla TC (2017) Optimization of physicochemical parameters influencing the production of prodigiosin from Serratia nematodiphila RL2 and exploring its antibacterial activity. 3 Biotech 7(5):338. https://doi.org/10.1007/s13205-017-0979-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shen YX, Zhang XM, Prinyawiwatkul W, Xu ZM (2014) Simultaneous determination of red and yellow artificial food colourants and carotenoid pigments in food products. Food Chem 157:553–558. https://doi.org/10.1016/j.foodchem.2014.02.039

    Article  CAS  PubMed  Google Scholar 

  3. Powell C, Hughes AD, Kelly MS, Conner S, McDougal GJ (2014) Extraction and identification of antioxidant polyhydroxynaphthoquinone pigments from the sea urchin, Psammechinus miliaris. LWT-Food Sci Technol 59:455–460. https://doi.org/10.1002/cbdv.201700182

    Article  CAS  Google Scholar 

  4. Osman MY, Sharaf IA, Osman HMY, El-Khouly ZA, Ahmed EI (2004) Synthetic organic food colouring agents and their degraded products: effects on human and rat cholinesterases. Brit J Biomed Sci 61(3):128–132. https://doi.org/10.1002/cbdv.201700182

    Article  CAS  Google Scholar 

  5. Adeel S, Raf S, Salman M, Abrar S (2017) Potential resurgence of natural dyes in applied felds. In: Ulislam S (ed) Plant-based natural products: derivatives and applications. Wiley, Beverly

    Google Scholar 

  6. Nigam PS, Luke JL (2016) Food additives: production of microbial pigments and their antioxidant properties. Curr Opin Food Sci 7:93–100. https://doi.org/10.1016/j.cofs.2016.02.004

    Article  Google Scholar 

  7. Parmar M, Phutela UG (2015) Biocolors: the new generation additives. Int J Curr Microbiol Appl sci 4(7):688–694

    CAS  Google Scholar 

  8. Manikprabhu D, Lingappa K (2013) γ Actinorhodin a natural and attorney source for synthetic dye to detect acid production of fungi. Saudi J Biol Sci 20(2):163–168. https://doi.org/10.1016/j.sjbs.2013.01.004c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho YJ, Park JP, Hwang HJ, Kim SW, Choi JW, Yun JW (2002) Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett Appl Microbiol 35(3):195–202. https://doi.org/10.1046/j.1472-765X.2002.01168.x

    Article  CAS  PubMed  Google Scholar 

  10. Ribeiro D, Freitas M, Silva AMS, Carvalho F, Fernandes E (2018) Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem Toxicol 120:681–699. https://doi.org/10.1016/j.fct.2018.07.060

    Article  CAS  PubMed  Google Scholar 

  11. González BS, Hernández-Rojas J, Bretón J, Gomezllorente JM (2007) Global potential energy minima of (H2O) clusters on graphite. J Phys Chem C 111(40):14862–14869. https://doi.org/10.1021/jp074249f

    Article  CAS  Google Scholar 

  12. Tan HL, Xing ZY, Chen G, Tian XF, Wu ZQ (2018) Evaluating antitumor and antioxidant activities of yellow Monascus pigments from Monascus ruber fermentation. Molecules 23(12):3242. https://doi.org/10.3390/molecules23123242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gong XB, Luo H, Wu X, Liu H, Sun CW, Chen SC (2022) Production of red pigments by a newly isolated Talaromyces aurantiacus strain with led stimulation for screen printing. Indian J Microbiol 62:280–292. https://doi.org/10.1007/s12088-022-01008-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim YE, Matter IA, Lee N, Jung M, Lee YC, Choi SA, Lee SY, Kim JR, Oh YK (2020) Enhancement of astaxanthin production by Haematococcus pluvialis using magnesium aminoclay nanoparticles. Bioresource Technol 307:123270. https://doi.org/10.1016/j.biortech.2020.123270

    Article  CAS  Google Scholar 

  15. Rodriguez-Amaya DB (2016) Natural food pigments and colorants. Curr Opin Food Sci 7:20–26. https://doi.org/10.1016/j.cofs.2015.08.004

    Article  Google Scholar 

  16. Darwesh OM, Ibrahim AM, Hesham SA, Sulaiman AA, You-Kwan O (2020) Isolation and optimization of Monascus ruber OMNRC45 for red pigment production and evaluation of the pigment as a food colorant. Appl Sci 10(24):8867. https://doi.org/10.3390/app10248867

    Article  CAS  Google Scholar 

  17. Mumtaz R, Bashir S, Numan M, Shinwari ZK, Ali M (2019) Pigments from soil bacteria and their therapeutic properties: a mini review. Curr Microbiol 76(6):783–790. https://doi.org/10.1007/s00284-018-1557-2

    Article  CAS  PubMed  Google Scholar 

  18. Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry challenges and the way forward. Front Nutr 6(7):1–14. https://doi.org/10.3389/fnut.2019.00007

    Article  CAS  Google Scholar 

  19. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079. https://doi.org/10.1016/j.procbio.2013.06.006

    Article  CAS  Google Scholar 

  20. Indra Arulselvi P, Umamaheswari S, Ranandkumar SG, Karthik C, Jayakrishna C (2014) Screening of yellow pigment producing bacterial isolates from various eco-climatic areas and analysis of the carotenoid produced by the isolate. J Food Process Technol 5(1):1–4. https://doi.org/10.4172/2157-7110.1000292

    Article  Google Scholar 

  21. Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Tech 52:4669–4678. https://doi.org/10.1007/s13197-014-1601-6

    Article  CAS  Google Scholar 

  22. Dufossé L (2018) Microbial pigments from bacteria, yeasts, fungi, and microalgae for the food and feed industries. Nat Artif Flavor Agents Food Dyes 7:113–132. https://doi.org/10.3390/microorganisms7070186

    Article  CAS  Google Scholar 

  23. Rao MPN, Xiao M, Li WJ (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol 8:1113. https://doi.org/10.3389/fmicb.2017.01113

    Article  Google Scholar 

  24. Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ (2017) Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol 4:4. https://doi.org/10.1186/s40694-017-0033-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mapari SS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants. Trends Biotechnol 28(6):300–307. https://doi.org/10.1016/j.tibtech.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  26. Dufosse L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotech 26(26):56–61. https://doi.org/10.1016/j.copbio.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  27. Mak S, Nodwell JR (2017) Actinorhodin is a redox-active antibiotic with a complex mode of action against Gram-positive cells. Mol Microbiol 106(4):597–613. https://doi.org/10.1111/mmi.13837

    Article  CAS  PubMed  Google Scholar 

  28. Newman DJ, Cragg GM, Snader KM (2003) Natural products as sources of new drugs over the period 1981–2002. J Nat Prod 66:1022–1037. https://doi.org/10.1021/np030096l

    Article  CAS  PubMed  Google Scholar 

  29. Zin NM, Sarmin NI, Ghadin N, Basri DF, Sidik NM, Hess WM, Strobel GA (2007) Bioactive endophytic streptomycetes from the Malay Peninsula. FEMS Microbiol Lett 274:83–88. https://doi.org/10.1111/j.1574-6968.2007.00819.x

    Article  CAS  PubMed  Google Scholar 

  30. Venil CK, Aruldass CA, Dufossé L, Zakaria ZA, Ahmad WA (2014) Current perspective on bacterial pigments: emerging sustainable compounds with coloring and biological properties for the industry–an incisive evaluation. RSC Adv 4(74):39523. https://doi.org/10.1002/chin.201449245

    Article  CAS  Google Scholar 

  31. Wang ME, Kirken RA, Behbod F, Erwin-Cohen R, Stepkowski SM, Kahan BD (2001) Inhibition of jak3 tyrosine kinase by pnu156804 blocks rat heart allograft rejection. Transpl Proc 33(1–2):201. https://doi.org/10.1016/s0041-1345(00)02794-9

    Article  Google Scholar 

  32. Stepkowski SM, Erwin-Cohen RA, Behbod F, Wang ME, Qu X, Tejpal N, Nagy ZS, Kahan BD, Kirken RA (2002) Selective inhibitor of janus tyrosine kinase 3, pnu156804, prolongs allograft survival and acts synergistically with cyclosporine but additively with rapamycin. Blood 99(2):680–689. https://doi.org/10.1182/blood.V99.2.680

    Article  CAS  PubMed  Google Scholar 

  33. Huang J, Sun QJ, Zheng BQ, Du LJ, Wei L, Gao XZ (2023) Effects of myrtle addition methods on physical and chemical properties, Aromatic components and sensory of beer. Food Sci Technol 48:88–94. https://doi.org/10.13684/j.cnki.spkj.2023.03.010

    Article  CAS  Google Scholar 

  34. Contreras-Machuca PI, Avello M, Pastene E, Machuca N, Aranda M, Hernández V, Fernandez M (2022) Chemical characterization and microencapsulation of extracellular fungal pigments. Appl Microbiol Biotechnol 106:8021–8034. https://doi.org/10.1007/s00253-022-12255-9

    Article  CAS  PubMed  Google Scholar 

  35. Abuelizz HA, Anouar EH, Marzouk M, Taie HAA, Ahudhaif A, Al-Salahi R (2020) DFT study and radical scavenging activity of 2-phenoxypyridotriazolo pyrimidines by DPPH, ABTS, FRAP and reducing power capacity. Chemi Pap 74:2893–2899. https://doi.org/10.1007/s11696-020-01126-0

    Article  CAS  Google Scholar 

  36. Moukette BM, Pieme CA, Njimou JR, Biapa CPN, Marco B, Ngogang JY (2015) In vitro antioxidant properties, free radicals scavenging activities of extracts and polyphenol composition of a non-timber forest product used as spice: Monodora myristica. Biol Res 48(1):1–17. https://doi.org/10.1186/s40659-015-0003-1

    Article  CAS  Google Scholar 

  37. Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD (1993) A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med 59:250–252. https://doi.org/10.1055/s-2006-959661

    Article  CAS  PubMed  Google Scholar 

  38. Fu JX (2018) Organic chemistry-structure and property related analysis and functions, 4th edn. Higher Education Press, Beijing

    Google Scholar 

  39. Andrés-Bello A, Barreto-Palacios V, García-Segovia P, Mir-Be LJ, Martínez-Monzó J (2013) Effect of pH on color and texture of food products. Food Eng Rev 5(3):158–170. https://doi.org/10.1007/s12393-013-9067-2

    Article  CAS  Google Scholar 

  40. Zhao TX, Min Y, Luo JX, Chen SZ, Qiu BH, Wang YQ, Qiao HZ, Wang J (2023) Antioxidant activity and stability of Rehmannia glutinosa residues pigment. Feed Res 46:71–78. https://doi.org/10.13557/j.cnki.issn1002-2813.2023.16.014

    Article  Google Scholar 

  41. Venil CK, Velmurugan P, Dufosse L, Devi PR, Ravi AV (2020) Fungal pigments: potential coloring compounds for wide ranging applications in textile dyeing. J Fungi 6:68. https://doi.org/10.3390/jof6020068

    Article  CAS  Google Scholar 

  42. Suwannarach N, Kumla J, Nishizaki Y, Sugimoto N, Meerak J, Matsui K, Lumyong S (2019) Optimization and characterization of red pigment production from an endophytic fungus, Nigrospora aurantiaca CMU-ZY2045, and its potential source of natural dye for use in textile dyeing. Appl Microbiol Biot 103:6973–6987. https://doi.org/10.1007/s00253-019-09926-5

    Article  CAS  Google Scholar 

  43. Buchweitz M (2016) Natural solutions for blue colors in food. In: Carle R, Schweiggert RM (eds) Handbook on natural pigments in food and beverages. Woodhead Publishing, Amsterdam

    Google Scholar 

  44. Newsome AG, Culver CA, Breemen RBV (2014) Nature’s palette: the search for natural blue colorants. J Agric Food Chem 62:6498–6511. https://doi.org/10.1021/jf501419q

    Article  CAS  PubMed  Google Scholar 

  45. Zhai XJ, Zhou YG (2014) Modern methods of studying structure of materials, Second. China University of Science and Technology Press, Hefei

    Google Scholar 

  46. Zhao YX, Sun XY (2010) Spectral identification of organic molecular structure, 2nd edn. Science press, Beijing

    Google Scholar 

  47. Peng CX, Wang QP, Liu HR, Gao B, Sheng J, Gong JS (2013) Effects of Zijuan pu-erh tea theabrownin on metabolites inhyperlipidemic rat feces by Py-GC/MS. J Anal Appl Pyrol 104:226–233. https://doi.org/10.1016/j.jaap.2013.07.011

    Article  CAS  Google Scholar 

  48. Furuta S, Matsuhashi H, Arata K (2006) Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor. Biomass Bioenerg 30(10):870–873. https://doi.org/10.1016/j.biombioe.2005.10.010

    Article  CAS  Google Scholar 

  49. Chen HW, Wei KH, Ding JH (2016) Handbook of analytical chemistry, 3rd edn. Chemical Industry Press, Beijing

    Google Scholar 

  50. Chen YS, Xie BJ, Yang JF, Chen JG, Su ZD (2018) Identifcation of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions. Food Chem 240:204–211. https://doi.org/10.1016/j.foodchem.2017.06.067

    Article  CAS  PubMed  Google Scholar 

  51. Watson JT, Sparkman OD (2019) Introduction to mass spectrometry: instrumentation, applications, and strategies of data interpretation, 4th edn. Wiley, Chichester, West Sussex, England

    Google Scholar 

  52. Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49(2):85–99. https://doi.org/10.1134/S000368381302004X

    Article  CAS  Google Scholar 

  53. Hajjaj H, Klaébé A, Loret MO, Goma G, Blanc PJ, François J (1999) Biosynthetic pathway of citrinin in the filamentous fungus Monascus ruber as revealed by 13 C nuclear magnetic resonance. Appl Environ Microb 65(1):311–314. https://doi.org/10.1128/AEM.65.1.311-314.1999

    Article  CAS  Google Scholar 

  54. Li YR, Zhou WW, Wang ZY (2020) Relationship between antioxidant activity and spectrum-effect of hawthorn leaf extracts. Chin Pharm J 55(20):1673–1679. https://doi.org/10.11669/cpj.2020.20.004

    Article  Google Scholar 

  55. Niu DF, Wang B, Zhang J (2019) Study on antioxidant activity of different solvent extracts of rape bee pollen and rape bee pollen and rape bee bread. Food Res Devel 40(6):42–46. https://doi.org/10.3969/j.issn.1005-6521.2019.06.008

    Article  CAS  Google Scholar 

  56. Li FW, Xue F, Yu XH (2017) GC–MS, FTIR and Raman analysis of antioxidant components of red pigments from Stemphylium lycopersici. Curr Microbiol 74:532–539. https://doi.org/10.1007/s00284-017-1220-3

    Article  CAS  PubMed  Google Scholar 

  57. Ranković BR, Kosanić MM, Stanojković TP (2011) Antioxidant, antimicrobial and anticancer activity of the lichens Cladonia furcata, Lecanora atra and Lecanora muralis. BMC Complem Altern M 11:97. https://doi.org/10.1186/1472-6882-11-97

    Article  Google Scholar 

  58. Kumar GC, Mongolla P, Pombala S, Kamle A, Joseph J (2011) Physicochemical characterization and antioxidant activity of melanin from a novel strain of Aspergillus bridgeri ICTF-201. Lett Appl Microbiol 53:350–358. https://doi.org/10.1111/j.1472-765X.2011.03116.x

    Article  CAS  PubMed  Google Scholar 

  59. Georgiou CD, Sun HJ, McKay CP, Grintzalis K, Papapostolo I, Zisimopoulos D, Panagiotidis K, Zhang GS, Koutsopoulou E, Christidis GE, Margiolakim I (2015) Evidence for photochemical production of reactive oxygen species in desert soils. Nat Commun 6:7100. https://doi.org/10.1038/ncomms8100

    Article  CAS  PubMed  Google Scholar 

  60. Mandelli F, Miranda VS, Rodrigues E, Mercadante AZ (2012) Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microb Biot 28(4):1781–1790. https://doi.org/10.1007/s11274-011-0993-y

    Article  CAS  Google Scholar 

  61. Mayorga P, Pérez KR, Cruz SM, Cáceres A (2010) Comparison of bioassays using the anostracan crustaceans Artemia salina and Thamnocephalus platyurus for plant extract toxicity screening. Bras J Pharm 20(6):897–903. https://doi.org/10.1590/S0102-695X2010005000029

    Article  Google Scholar 

  62. Veni T, Pushpanathan T (2014) Comparison of the Artemia salina and Artemia franciscana bioassays for toxicity of Indian medicinal plants. J Coast Life Med 2:453–445. https://doi.org/10.12980/JCLM.2.201414J29

    Article  Google Scholar 

  63. Finger S, Godoy Félix A, Wittwer G, Aranda CP, Calderón R, Miranda CD (2019) Miranda purifcation and characterization of indochrome type blue pigment produced by Pseudarthrobacter sp. 34LCH1 isolated from Atacama desert. J Ind Microbiol Biot 46:101–111. https://doi.org/10.1007/s10295-018-2088-3

    Article  CAS  Google Scholar 

  64. Omeke JN, Anaga AO, Okoye JA (2018) Brine shrimp lethality and acute toxicity tests of different hydromethanol extracts of Anacardium occidentale using in vitro and in vivo models: a preliminary study. Comp Clin Pathol 27:1717–1721. https://doi.org/10.1007/s00580-018-2798-y

    Article  CAS  Google Scholar 

  65. Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DEJ, McLaughlin JL (1982) Brine hrimp: a convenient general bioassay for active plant constituents. Planta Med 45(5):31–34. https://doi.org/10.1055/s-2007-971236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to the Analytical Testing Center of Hefei Normal University and the Molecular Sequencing Center of Shanghai Bioengineering Corporation for support with chemical structure analysis and molecular sequencing.

Funding

This study were funded by the Project of Natural Science Foundation of Higher Education of Anhui Province (2023AH051295); Blueberry Engineering Technology Research Center of Anhui; Green Food Rural Revitalization Collaborative Technology Service Center of Anhui (GXXT-2022–078); College student Innovation and Entrepreneurship Training Program in Anhui Province (S202314098184).

Author information

Authors and Affiliations

Authors

Contributions

MZ: investigation, conceptualization, methodology, data curation, writing-original draft preparation, supervision, funding acquisition. HM, JQ, MY: sample collection, investigation, methodology.

Corresponding author

Correspondence to Minghui Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Compliance with ethics requirements

Authors declare that this study is in compliance with research ethical standards. In particular this article does not contain any studies with human and animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Han, M., Qing, J. et al. Characterization, components, and chemical structure of a novel natural pigments derived from Streptomyces tauricus. Eur Food Res Technol (2024). https://doi.org/10.1007/s00217-024-04575-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00217-024-04575-z

Keywords

Navigation