Skip to main content
Log in

Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the carotenoids produced by the extremophile microorganisms Halococcus morrhuae, Halobacterium salinarium and Thermus filiformis were separated and identified by high-performance liquid chromatography connected to a diode array detector and a tandem mass spectrometer. The in vitro scavenging capacity of the carotenoid extracts against radical and non-radical species was evaluated. In halophilic microorganisms, the following carotenoids were identified: bacterioruberin, bisanhydrobacterioruberin, trisanhydrobacterioruberin and their derivatives. In the thermophilic bacterium, the carotenoids all-trans-zeaxanthin, zeaxanthin monoglucoside, thermozeaxanthins and thermobiszeaxanthins were identified. The antioxidant capacities of the carotenoid extracts of H. morrhuae (trolox equivalent antioxidant capacity = 5.07 and IC50 = 0.85 μg mL−1) and H. salinarium (trolox equivalent antioxidant capacity = 5.28 and IC50 = 0.84 μg mL−1) were similar and higher than those of the bacterium T. filiformis (trolox equivalent antioxidant capacity = 2.87 and IC50 = 2.41 μg mL−1). This difference is related to the presence of acyclic carotenoids with both large numbers of conjugated double bounds and of hydroxyl groups in the major carotenoid of the halophilic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albrecht M, Takaichi S, Steiger S, Wang Z, Sandmann G (2000) Novel hydroxycarotenoids with improved antioxidative properties produced by gene combination in Escherichia coli. Nat Biotechnol 18:843–846

    Article  CAS  Google Scholar 

  • Almeida IF, Fernandes E, Lima JLFC, Costa PC, Bahia MF (2008) Walnut (Juglans regia) leaf extracts are strong scavengers of pro-oxidant reactive species. Food Chem 106:1014–1020

    Article  CAS  Google Scholar 

  • Barua RK, Barua AB (1966) Oxidation of Zeaxanthin. Biochem J 101:250–255

    CAS  Google Scholar 

  • Bergey’s DH, Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Britton G (1995) UV/Visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: spectroscopy, vol 1B. Birkhauser, Basel

  • Burton GW (1989) Antioxidant action of carotenoids. J Nutr 119:109–111

    CAS  Google Scholar 

  • Carreto L, Wait R, Nobre F, Costa MS (1996) Determination of the structure of a novel glycolipid from Thermus aquaticus 15004 and demonstration that hydroxyl fatty acids are amide linked to glycolipids in Thermus spp. J Bacteriol 178:6479–6486

    CAS  Google Scholar 

  • Chisté RC, Mercadante AZ, Gomes A, Fernandes E, Lima SFD, Bragagnolo N (2011) In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species. Food Chem 127:419–426

    Article  Google Scholar 

  • Chung AP, Rainey FA, Valente M (2000) Thermus igniterrae sp. Nov. and Thermus antranikianii sp. Nov., two new species from Iceland. Int J Syst Evol Microbiol 50:209–217

    Article  CAS  Google Scholar 

  • Costa D, Gomes A, Reis S, Lima JLFC, Fernandes E (2005) Hydrogen peroxide scavenging activity by non-steroidal anti-inflammatory drugs. Life Sci 76:2841–2848

    Article  CAS  Google Scholar 

  • Di Mascio P, Kaiser S, Sies H (1989) Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys 274:532–538

    Article  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180

    Article  CAS  Google Scholar 

  • Hoshino T, Yoshino Y, Guevarra ED, Ishida S, Hirutaa T, Fujiia R, Nakahara T (1994) Isolation and partial characterization of carotenoid underproducing and overproducing mutants from an extremely thermophilic Thermus thermophilus HB27. J Ferment Bioeng 77:131–136

    Article  CAS  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  • Huber R, Stetter KO (2004) The prokaryotes: an evolving electronic resource for the microbiological community. Springer, New York

    Google Scholar 

  • Kelly M, Norgard S, Liaaen-Jensen S (1970) Bacterial carotenoids XXXI.C50-Carotenoids 5. Carotenoids of Halobacterium salinarium, especially bacterioruberin. Acta Chem Scand 24:2169–2182

    Article  CAS  Google Scholar 

  • Klassen JL, Foght JM (2011) Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 15:45–57

    Article  Google Scholar 

  • Leone S, Molinaro A, Lindner B, Romano I, Nicolaus B, Parrilli M, Lanzetta R, Holst O (2006) The structures of glycolipids isolated from highly thermophilic bacterium Thermus thermophilus Samu-SA1. Glycobiology 16:766–775

    Article  CAS  Google Scholar 

  • Lutnaes BF, Strand A, Pétursdóttir SK, Liaaen-Jensen S (2004) Carotenoids of thermophilic bacteria—Rhodothermus marinus from submarine Icelandic hot springs. Biochem Syst Ecol 32:455–468

    Article  CAS  Google Scholar 

  • Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384:240–242

    Article  CAS  Google Scholar 

  • Moore RL, Mccarthy BJ (1969) Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria. J Bacteriol 99:248–254

    CAS  Google Scholar 

  • Ourisson G, Nakatani Y (1989) Bacterial carotenoids as membrane reinforcers. A general role for polyterpenoids: membrane stabilization. In: Krinsky NI, Mathews-Roth MM, Taylor RT (eds) Carotenoids, chemistry and biology. Plenum, New York, pp 237–246

    Google Scholar 

  • Pietta P, Simonetti P, Gardana C, Mauri P (2000) Trolox equivalent antioxidant capacity (TEAC) of Ginkgo biloba flavonol and Camellia sinensis catechin metabolites. J Pharmaceut Biomed 23:223–226

    Article  CAS  Google Scholar 

  • Ramaley RF, Hixson J (1970) Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus. J Bacteriol 103:527–528

    CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans CA (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med 20:933–956

    Article  CAS  Google Scholar 

  • Ronnekleiv M, Liaaen-Jensen S (1992) Bacterial carotenoids. 52. *C50-carotenoids naturally occurring geometrical isomers of bacterioruberin. Acta Chem Scand 46:1092–1095

    Article  Google Scholar 

  • Ronnekleiv M, Liaaen-Jensen S (1995) Bacterial carotenoids 53*, C50-carotenoids 23; carotenoids of Haloferax volcanii versus other halophilic bacteria. Biochem Syst Ecol 23:627–734

    Article  CAS  Google Scholar 

  • Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide HJ (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. Radiat Res 39:251–262

    Article  CAS  Google Scholar 

  • Squina FM, Mercadante AZ (2003) Análise, por CLAE, de carotenoides de cinco linhagens de Rhodotorula. Braz J Pharm Sci 39:309–318

    CAS  Google Scholar 

  • Stahl W, Sies H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740:101–107

    CAS  Google Scholar 

  • Tian B, Xu Z, Sun Z, Lin J, Hua Y (2007) Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta 1770:902–911

    Article  CAS  Google Scholar 

  • Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition and description of Haloarcula genus nov. and Haloferax genus nov. Syst Appl Microbiol 8:89–99

    Article  Google Scholar 

  • Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Veja JM (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333

    Article  Google Scholar 

  • Yokoyama A, Sandmann G, Hoshino T, Adachi K, Sakai M, Shizuri Y (1995) Thermozeaxanthins, new carotenoid-glicoside-esters from thermophilic Eubacterium Thermus thermophilus. Tetrahedron Lett 36:4901–4904

    CAS  Google Scholar 

  • Yokoyama A, Yoshikazu S, Hoshino T, Sandmann G (1996) Thermocryptoxanthins: novel intermediates in carotenoid biosynthetic pathway of Thermus thermophilus. Arch Microbiol 165:342–345

    Article  CAS  Google Scholar 

  • Zechmeister L (1944) Cistrans isomerization and stereochemistry of carotenoids and diphenylpolyenes. Chem Rev 34:267–344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Brazilian National Council for Scientific Research (CNPq) and the Foundation for the Support of Research of the State of São Paulo (FAPESP) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Z. Mercadante.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandelli, F., Miranda, V.S., Rodrigues, E. et al. Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microbiol Biotechnol 28, 1781–1790 (2012). https://doi.org/10.1007/s11274-011-0993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-011-0993-y

Keywords

Navigation