Skip to main content

Advertisement

Log in

Studying on genetic diversity and metabolic differences of Saccharomyces cerevisiae in Baijiu

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Baijiu (a Chinese liquor), one of the six world-renowned distilled liquors, is popular among consumers, and Saccharomyces cerevisiae plays the most important role. However, the diversity and metabolic differences of S. cerevisiae Baijiu yeasts remain unclear. Here, we first studied S. cerevisiae strains isolated from fermentative agents and then analyzed the environmental tolerance and metabolomic differences among different S. cerevisiae strains. The 29 S. cerevisiae strains were classified into 14 genotypes based on DNA fingerprints. Environmental tolerance analysis revealed differences among yeasts. A total of 88 classes of 854 secondary metabolites were detected via liquid chromatography coupled with tandem mass spectrometry (LC‒MS/MS), 15 of which accounted for more than 1%, and carboxylic acids and their derivatives accounted for the highest percentage (20.73%), followed by benzene and substituted derivatives (12.76%). Both OPLS-DA and differentially abundant metabolite analysis revealed that the metabolites of the 14 S. cerevisiae genotypes were significantly different, and the differentially abundant metabolites l-erythrulose, 5(s)-HpETE, kaempferide, and cellobiose were obtained. Metabolic pathway analysis revealed that the metabolism of glycine, serine, and threonine differed significantly (p < 0.05). These results revealed the phenotypic diversity of industrial Baijiu yeasts and provided additional options for the utilization of S. cerevisiae yeasts in the brewing industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Álvarez R, Garces F, Louis EJ, Dequin S, Camarasa C (2023) Beyond S. cerevisiae for winemaking: fermentation-related trait diversity in the genus Saccharomyces. Food Microbiol 113:104270. https://doi.org/10.1016/j.fm.2023.104270

  2. Chen YR, Yang YL, Cai WQ et al (2022) Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 18:1–16. https://doi.org/10.1080/10408398.2022.2101090

    Article  CAS  Google Scholar 

  3. Origone AC, Flores MG, Rodríguez ME, Querol A, Lopes CA (2020) Inheritance of winemaking stress factors tolerance in Saccharomyces uvarum/S. eubayanus × S. cerevisiae artificial hybrids. Int J Food Microbiol 320:108500. https://doi.org/10.1016/j.ijfoodmicro.2019.108500

  4. Duan SF, Han PJ, Wang QM, Liu WQ et al (2018) The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun 9:2690. https://doi.org/10.1038/s41467-018-05106-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Y, Jiang J, Song YY et al (2022) Yeast diversity during spontaneous fermentations and oenological characterisation of indigenous Saccharomyces cerevisiae for potential as wine starter cultures. Microorganisms 10(7):1455. https://doi.org/10.3390/microorganisms10071455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Celis M, Ruiz J, Martín-Santamaría M et al (2019) Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Lett Appl Microbiol 68(6):580–588. https://doi.org/10.1111/lam.13155

    Article  PubMed  Google Scholar 

  7. Ayoub MJ, Legras JL, Abi-Nakhoul P et al (2021) Lebanon’s native oenological Saccharomyces cerevisiae flora: assessment of different aspects of genetic diversity and evaluation of winemaking potential. J Fungi (Basel) 7(8):678. https://doi.org/10.3390/jof7080678

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sun Y, Qin Y, Pei YF et al (2017) Evaluation of Chinese Saccharomyces cerevisiae wine strains from different geographical origins. Am J Enol Vitic 68(1):73–80. https://doi.org/10.5344/ajev.2016.16059

    Article  Google Scholar 

  9. Tristezza M, Gerardi C, Logrieco A, Grieco, F (2009) An optimized protocol for the production of interdelta markers in S. cerevisiae by using capillary electrophoresis. J Microbiol Methods 78(3):286–291. https://doi.org/10.1016/j.mimet.2009.06.012

  10. Legras JL, Karst, F (2003) Optimisation of interdelta analysis for S. cerevisiae strain characterisation. FEMS Microbiol Lett 221(2):249–255. https://doi.org/10.1016/S0378-1097(03)00205-2

  11. Liu N, Qin Y, Song YY et al (2015) Selection of indigenous S. cerevisiae strains in Shanshan County (Xinjiang, China) for winemaking and their aroma-producing characteristics. World J Microbiol Biotechnol 31(11):1781–1792. https://doi.org/10.1007/s11274-015-1929-8

  12. Tra Bi CY, N’guessan FK, Kouakou CA, Djè MK (2016) Identification of yeasts isolated from raffia wine (Raphia hookeri) produced in Côte d’ Ivoire and genotyping of S. cerevisiae strains by PCR inter-delta. World J Microbiol Biotechnol 32:125. https://doi.org/10.1007/s11274-016-2095-3

  13. Guo PF, Furnary T, Vasiliou V et al (2022) Non-targeted metabolomics and associations with per-and polyfluoroalkyl substances (PFAS) exposure in humans: a scoping review. Environ Int 162:107159. https://doi.org/10.1016/j.envint.2022.107159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Roullier-Gall C, Bordet F, David V, Schmitt-Kopplin P, Alexandre H (2022) Yeast interaction on Chardonnay wine composition: impact of strain and inoculation time. Food Chem 374(16):131732. https://doi.org/10.1016/j.foodchem.2021.131732

    Article  CAS  PubMed  Google Scholar 

  15. Liu YF, Wan B, Yang F et al (2022) Metabolomics-driven elucidation of interactions between Saccharomyces cerevisiae and Lactobacillus panis from Chinese Baijiu Fermentation Microbiome. Fermentation 8(1):33. https://doi.org/10.3390/fermentation8010033

    Article  CAS  Google Scholar 

  16. Dunn WB, Broadhurst D, Begley P et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083. https://doi.org/10.1038/nprot.2011.335

    Article  CAS  PubMed  Google Scholar 

  17. Zelena E, Dunn WB, Broadhurst D et al (2009) Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal Chem 81(4):1357–1364. https://doi.org/10.1021/ac8019366

    Article  CAS  PubMed  Google Scholar 

  18. Want EJ, Masson P, Michopoulos F et al (2013) Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc 8:17–32. https://doi.org/10.1038/nprot.2012.135

    Article  CAS  PubMed  Google Scholar 

  19. Smith CA, Want EJ, O’Maille G et al (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78(3):779–787. https://doi.org/10.1021/ac051437y

    Article  CAS  PubMed  Google Scholar 

  20. Gagnebin Y, Tonoli D, Lescuyer P et al (2017) Metabolomic analysis of urine samples by UHPLCQTOF-MS: impact of normalization strategies. Anal Chim Acta 955:27–35. https://doi.org/10.1016/j.aca.2016.12.029

    Article  CAS  PubMed  Google Scholar 

  21. Thévenot EA, Roux A, Xu Y, Ezan E, Junot C (2015) Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res 14(8):3322–3335. https://doi.org/10.1021/acs.jproteome.5b00354

    Article  CAS  PubMed  Google Scholar 

  22. Xia J, Wishart DS (2011) Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat Protoc 6:743–760. https://doi.org/10.1038/nprot.2011.319

    Article  CAS  PubMed  Google Scholar 

  23. Matsushika A, Suzuki T, Goshima T, Hoshino T (2017) Evaluation of Saccharomyces cerevisiae GAS1 with respect to its involvement in tolerance to low pH and salt stress. J Biosci Bioeng 124(2):164–170. https://doi.org/10.1016/j.jbiosc.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  24. Coradini ALV, Silveira Bezerra de Mello F, Furlan M, Maneira et al (2021) QTL mapping of a Brazilian bioethanol strain links the cell wall protein-encoding gene GAS1 to low pH tolerance in S. cerevisiae. Biotechnol Biofuels 14:239. https://doi.org/10.1186/s13068-021-02079-6

  25. Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E (2020) Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 6(1):1–31. https://doi.org/10.3934/microbiol.2020001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kruasuwan W, Puseenam A, Am-in S et al (2023) Evaluation of thermotolerant and ethanol-tolerant Saccharomyces cerevisiae as an alternative strain for bioethanol production from industrial feedstocks. 3 Biotechnol 13:23. https://doi.org/10.1007/s13205-022-03436-4

  27. Guimarães TM, Moriel DG, Machado LA, Fadel Picheth CMT, BonfimI TMB (2006) Isolation and characterization of Saccharomyces cerevisiae strains of winery interest. Braz J Pharm Sci 42(1):119–126. https://doi.org/10.1590/S1516-93322006000100013

    Article  Google Scholar 

  28. Farrés M, Piña B, Tauler R (2015) Chemometric evaluation of Saccharomyces cerevisiae metabolic profiles using LC-MS. Metabolomics 11:210–224. https://doi.org/10.1007/s11306-014-0689-z

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Li B, Wang SP, Xia ZY, Gou M, Tang YQ (2021) Improving multiple stress-tolerance of a flocculating industrial Saccharomyces cerevisiae strain by random mutagenesis and hybridization. Process Biochem 102:275–285. https://doi.org/10.1016/j.procbio.2020.12.022

    Article  CAS  Google Scholar 

  30. Mavrommati M, Papanikolaou S, Aggelis G (2023) Improving ethanol tolerance of S. cerevisiae through adaptive laboratory evolution using high ethanol concentrations as a selective pressure. Process Biochem 124:280–289. https://doi.org/10.1016/j.procbio.2022.11.027

    Article  CAS  Google Scholar 

  31. Sebag SC, Qian QW, Upara C et al (2023) A medium chain fatty acid, 6-hydroxyhexanoic acid (6-HHA), protects against obesity and insulin resistance. BioRxiv. https://doi.org/10.1101/2023.07.19.549684

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pons A, Lavigne V, Landais Y, Darriet P, Dubourdieu D (2010) Identification of a Sotolon pathway in dry white wines. J Agric Food Chem 58(12):7273–7279. https://doi.org/10.1021/jf100150q

    Article  CAS  PubMed  Google Scholar 

  33. Lanznaster D, Dal-Cim T, Piermartiri TCB, Tasca CI (2016) Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging Dis 7(5):657–679. https://doi.org/10.14336/AD.2016.0208

  34. Kawamura T, Okubo T, Sato K et al (2012) Glycerophosphocholine enhances growth hormone secretion and fat oxidation in young adults. Nutrition 28(11–12):1122–1126. https://doi.org/10.1016/j.nut.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  35. Adeva-Andany MM, Calvo-Castro I, Fernández-Fernández C, Donapetry-García C, Pedre-Piñeiro AM (2017) Critical review significance of L-carnitine for human health. IUBMB Life 69(8):578–594. https://doi.org/10.1002/iub.1646

    Article  CAS  PubMed  Google Scholar 

  36. Aneesh A, George AJ, Kariyil BJ, Krishna D, Abraham, MJ (2018) Phytochemical evaluation of the leaves of Aegle marmeloes L.(L.)-an important medicinal plant. J Trop Agric 56(1):81–85

  37. Roohbakhsh A, Parhiz H, Soltani F et al (2015) Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 124:64–74. https://doi.org/10.1016/j.lfs.2014.12.030

    Article  CAS  PubMed  Google Scholar 

  38. Burger C, Kessler C, Gruber S et al (2019) L-Erythrulose production with a multideletion strain of Gluconobacter oxydans. Appl Microbiol Biotechnol 103:4393–4404. https://doi.org/10.1007/s00253-019-09824-w

    Article  CAS  PubMed  Google Scholar 

  39. Tie FF, Ding J, Hu N et al (2021) Kaempferol and Kaempferide attenuate oleic acid-induced lipid accumulation and oxidative stress in HepG2 cells. Int J Mol Sci 22(16):8847. https://doi.org/10.3390/ijms22168847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eguchi H, Matsunaga T, Endo S, Ichihara K, Ikari A (2020) Kaempferide enhances chemosensitivity of human lung adenocarcinoma A549 cells mediated by the decrease in phosphorylation of akt and claudin-2 expression. Nutrients 12(4):1190. https://doi.org/10.3390/nu12041190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li EP, Yang CT, Wang JP et al (2021) Leached starch content and molecular size during sorghum steaming for baijiu production is not determined by starch fine molecular structures. Int J Biol Macromol 184:50–56. https://doi.org/10.1016/j.ijbiomac.2021.06.03142

    Article  CAS  PubMed  Google Scholar 

  42. Li HS, Han XL, Liu HR et al (2021) Silage fermentation on sweet sorghum whole plant for Fen-Flavor Baijiu. Foods 10(7):1477. https://doi.org/10.3390/foods10071477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen SX, Perez-Samper G, Herrera-Malaver B et al (2023) Breeding of new Saccharomyces cerevisiae hybrids with reduced higher alcohol production for light-aroma-type-xiaoqu Baijiu production. J Am Soc Brew Chem 81(2):233–241. https://doi.org/10.1080/03610470.2022.2033608

    Article  CAS  Google Scholar 

  44. Wang YP, Sun ZG, Zhang CY et al (2021) Comparative transcriptome analysis reveals the key regulatory genes for higher alcohol formation by yeast at different α-amino nitrogen concentrations. Food Microbiol 95:103713. https://doi.org/10.1016/j.fm.2020.103713

    Article  CAS  PubMed  Google Scholar 

  45. Muthuramalingam P, Krishnan SR, Pandian S et al (2018) Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci Rep 8(1):9270. https://doi.org/10.1038/s41598-018-27703-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dickson RC, Lester RL (2002) Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta 1583(1):13–25. https://doi.org/10.1016/S1388-1981(02)00210-X

    Article  CAS  PubMed  Google Scholar 

  47. Lindahl L, Santos AXS, Olsson H, Olsson L, Bettiga M (2017) Membrane engineering of S. cerevisiae targeting sphingolipid metabolism. Sci Rep 7:41868. https://doi.org/10.1038/srep41868

Download references

Acknowledgements

This work was financially supported by Hubei Natural Science Foundation (Grant Numbers 2022CFB137 and 2023AFD026) and the Hubei Provincial Key Research and Development Program (2023BBB004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Yang or Shenxi Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests with respect to the work described in this paper.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig. 7 and Tables 2, 3, 4, 5, 6.

Fig. 7
figure 7

The neighbor-joining phylogenetic tree of 29 Saccharomyces cerevisiae strains

Table 2 Saccharomyces cerevisiae strains used in the study
Table 3 The number and proportion of each class substances in secondary metabolites
Table 4 Proportion of relative content of each class substances of 14 genotypes of Saccharomyces cerevisiae
Table 5 The number and proportion of each class substances in differential metabolites
Table 6 Proportion of relative content of each class substances of 14 genotypes of Saccharomyces cerevisiae in differential metabolites

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Lin, B., Tang, J. et al. Studying on genetic diversity and metabolic differences of Saccharomyces cerevisiae in Baijiu. Eur Food Res Technol 250, 1619–1640 (2024). https://doi.org/10.1007/s00217-024-04489-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-024-04489-w

Keywords

Navigation