Skip to main content
Log in

Greek table olives: an overview on the impact of processing elaborations on the content of biophenols and related nutritional implications

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The consumption of fermented foods has become an important dietary strategy to improve human health, and today, they account for a significant share in the international food market, with special emphasis on traditional or ethnic foods. Among fermented foods, table olives have a key position in the dietary preference of consumers around the Mediterranean basin and beyond. Greece has a long tradition in the production of table olives according to local craft-based processing methods. However, an extensive effort has been undertaken in the last decade to modernize the table olive industry and adopt scientifically based processing methods to produce the final products of high quality and consistency. During processing, the majority of components present in raw olives are transformed to render the product edible. Among these components, phenolic compounds have significant functional properties that may enhance the nutritional value of the final product. This review paper provides an up-to-date overview regarding the transformation of phenolic compounds during processing of the most economically important varieties of Greek table olives, including Halkidiki green olives, Kalamata and Conservolea natural black olives, and Thassos natural black dry-salted olives. The functional and antioxidant potential of Greek table olive varieties as well as their nutritional implications are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DOEPEL. (Interprofessional Association for Table Olives) (2023) Greek Table Olives: Our national treasure. https://olivetreeroute.gr/wp-content/uploads/Studies_Publications_017a.pdf (accessed 30 Jul 2023)

  2. Conte P, Fadda C, Del Caro A, Urgeghe PP, Piga A (2020) Table olives: an overview on effects of processing on nutritional and sensory quality. Foods 9(4):514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rezac S, Kok CR, Heermann M, Hutkins R (2018) Fermented foods as a dietary source of live organisms. Front Microbiol 9:1785

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xiang H, Sun-Waterhouse D, Waterhouse GIN, Cui C, Ruan Z (2019) Fermentation-enabled wellness foods: a fresh perspective. Food Sci Human Wellness 8(3):203–243

    Article  Google Scholar 

  5. Perpetuini G, Prete R, Garcia-Gonzalez N, Khairul Alam M, Corsetti A (2020) Table olives more than a fermented food. Foods 9(2):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kailis S G, Kiritsakis A (2017) Table olives: processing, nutritional, and health implications. In: Olives and olive oil as functional foods. p. 295–324

  7. Dais P, Hatzakis E (2015) 10—Analysis of bioactive microconstituents in olives, olive oil and olive leaves by NMR spectroscopy: an overview of the last decade. In: Boskou D (ed) Olive and olive oil bioactive constituents. AOCS Press, pp 299–332

    Chapter  Google Scholar 

  8. Crawford LM, Holstege DM, Wang SC (2018) High-throughput extraction method for phenolic compounds in olive fruit (Olea europaea). J Food Compos Anal 66:136–144

    Article  CAS  Google Scholar 

  9. Kiokias S, Proestos C, Oreopoulou V (2020) Phenolic acids of plant origin—a review on their antioxidant activity in vitro (O/W Emulsion Systems) along with their in vivo health biochemical properties. Foods 9(4):534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martakos I, Katsianou P, Koulis G, Efstratiou E, Nastou E, Nikas S, Dasenaki M, Pentogennis M, Thomaidis N (2021) Development of analytical strategies for the determination of olive fruit bioactive compounds using UPLC-HRMS and HPLC-DAD. Chemical characterization of Kolovi Lesvos variety as a case study. Molecules 26(23):7182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rashmi HB, Negi PS (2020) Phenolic acids from vegetables: a review on processing stability and health benefits. Food Res Int 136:109298

    Article  CAS  PubMed  Google Scholar 

  12. Tekaya M, Chehab H, Guesmi A, Faisal K, ben hamadi N, Hammami M, Mechri B (2022) Study of phenolic composition of olive fruits: validation of a simple and fast HPLC-UV method. OCL - Oilseeds and Fats, Crops and Lipids. 29

  13. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N (2012) Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—a review. Int J Mol Sci 13(3):3291–3340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D’Angelo C, Franceschelli S, Quiles JL, Speranza L (2020) Wide biological role of hydroxytyrosol: possible therapeutic and preventive properties in cardiovascular diseases. Cells 9(9):1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elmaksoud HAA, Motawea MH, Desoky AA, Elharrif MG, Ibrahimi A (2021) Hydroxytyrosol alleviate intestinal inflammation, oxidative stress and apoptosis resulted in ulcerative colitis. Biomed Pharmacother 142:112073

    Article  CAS  PubMed  Google Scholar 

  16. Fuccelli R, Fabiani R, Rosignoli P (2018) Hydroxytyrosol exerts anti-inflammatory and anti-oxidant activities in a mouse model of systemic inflammation. Molecules 23(12):3212

    Article  PubMed  PubMed Central  Google Scholar 

  17. Silva AFR, Resende D, Monteiro M, Coimbra MA, Silva AMS, Cardoso SM (2020) Application of hydroxytyrosol in the functional foods field: from ingredient to dietary supplements. Antioxidants 9(12):1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vijakumaran U, Yazid MD, Hj Idrus RB, Abdul Rahman MR, Sulaiman N (2021) Molecular action of hydroxytyrosol in attenuation of intimal hyperplasia: a scoping review. Frontiers in Pharmacol. https://doi.org/10.3389/fphar.2021.663266

    Article  Google Scholar 

  19. Zhang X, Qin Y, Wan X, Liu H, Iv C, Ruan W, Lu L, He L, Guo X (2020) Hydroxytyrosol plays antiatherosclerotic effects through regulating lipid metabolism via inhibiting the p38 signal pathway. Biomed Res Int 2020:5036572

    PubMed  PubMed Central  Google Scholar 

  20. Gates PJ, Lopes NP (2012) Characterisation of flavonoid aglycones by negative ion chip-based nanospray tandem mass spectrometry. Int J Anal Chem 2012:259217

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gouvinhas I, Machado N, Sobreira C, Domínguez-Perles R, Gomes S, Rosa E, Barros A (2017) Critical review on the significance of olive phytochemicals in plant physiology and human health. Molecules 22(11):1986

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lanza B, Ninfali P (2020) Antioxidants in extra virgin olive oil and table olives: connections between agriculture and processing for health choices. Antioxidants (Basel). 9(1):41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blekas G, Vassilakis C, Harizanis C, Tsimidou M, Boskou DG (2002) Biophenols in table olives. J Agric Food Chem 50(13):3688–3692

    Article  CAS  PubMed  Google Scholar 

  24. Fernández-Poyatos MP, Ruiz-Medina A, Llorent-Martínez EJ (2019) Phytochemical profile, mineral content, and antioxidant activity of Olea europaea L. cv Cornezuelo table olives. Influence of in vitro simulated gastrointestinal digestion. Food Chem 297:124933

    Article  PubMed  Google Scholar 

  25. Nediani C, Ruzzolini J, Romani A, Calorini L (2019) Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases. Antioxidants (Basel) 8(12):578

    Article  CAS  PubMed  Google Scholar 

  26. Ahamad J, Toufeeq I, Khan MA, Ameen MSM, Anwer ET, Uthirapathy S, Mir SR, Ahmad J (2019) Oleuropein: a natural antioxidant molecule in the treatment of metabolic syndrome. Phytother Res 33(12):3112–3128

    Article  CAS  PubMed  Google Scholar 

  27. Celano M, Maggisano V, Lepore SM, Russo D, Bulotta S (2019) Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: a critical analysis of experimental studies. Pharmacol Res 142:77–86

    Article  CAS  PubMed  Google Scholar 

  28. Kucukgul A, Isgor MM, Duzguner V, Atabay MN, Kucukgul A (2020) Antioxidant effects of oleuropein on hydrogen peroxide-induced neuronal stress—an in vitro study. Antiinflamm Antiallergy Agents Med Chem 19(1):74–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, McKeever LC, Malik NS (2017) Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens. Front Microbiol 8:113

    PubMed  PubMed Central  Google Scholar 

  30. Motawea MH, Abd Elmaksoud HA, Elharrif MG, Desoky AAE, Ibrahimi A (2020) Evaluation of anti-inflammatory and antioxidant profile of oleuropein in experimentally induced ulcerative colitis. Int J Mol Cell Med 9(3):224–233

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rishmawi S, Haddad F, Dokmak G, Karaman R (2022) A comprehensive review on the anti-cancer effects of oleuropein. Life (Basel). 12(8):1140

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zorić N, Kosalec I (2022) The Antimicrobial activities of oleuropein and hydroxytyrosol. In: Rai M, Kosalec I (eds) Promising antimicrobials from natural products. Springer International Publishing, Cham, pp 75–89

    Chapter  Google Scholar 

  33. Bianco A, Uccella N (2000) Biophenolic components of olives. Food Res Int 33(6):475–485

    Article  CAS  Google Scholar 

  34. Boskou G, Salta FN, Chrysostomou S, Mylona A, Chiou A, Andrikopoulos NK (2006) Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chem 94(4):558–564

    Article  CAS  Google Scholar 

  35. Ramírez E, Medina E, Brenes M, Romero C (2014) Endogenous enzymes involved in the transformation of oleuropein in Spanish table olive varieties. J Agric Food Chem 62(39):9569–9575

    Article  PubMed  Google Scholar 

  36. Zoidou E, Melliou E, Gikas E, Tsarbopoulos A, Magiatis P, Skaltsounis A-L (2010) Identification of Throuba Thassos, a Traditional Greek Table Olive Variety, as a Nutritional Rich Source of Oleuropein. J Agric Food Chem 58(1):46–50

    Article  CAS  PubMed  Google Scholar 

  37. Perpetuini G, Caruso G, Urbani S, Schirone M, Esposto S, Ciarrocchi A, Prete R, Garcia-Gonzalez N, Battistelli N, Gucci R, Servili M, Tofalo R, Corsetti A (2018) Changes in polyphenolic concentrations of table olives (cv. Itrana) produced under different irrigation regimes during spontaneous or inoculated fermentation. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01287

    Article  PubMed  PubMed Central  Google Scholar 

  38. Romero C, Brenes M, Yousfi K, García P, García A, Garrido A (2004) Effect of cultivar and processing method on the contents of polyphenols in table olives. J Agric Food Chem 52(3):479–484

    Article  CAS  PubMed  Google Scholar 

  39. Catinella G, Donzella S, Borgonovo G, Dallavalle S, Contente ML, Pinto A (2022) Efficient 2-step enzymatic cascade for the bioconversion of oleuropein into hydroxytyrosol. Antioxidants (Basel). 11(2):260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu M, Yong Q, Yu S (2018) Efficient bioconversion of oleuropein from olive leaf extract to antioxidant hydroxytyrosol by enzymatic hydrolysis and high-temperature degradation. Biotechnol Appl Biochem 65(5):680–689

    Article  CAS  PubMed  Google Scholar 

  41. Ramírez E, Brenes M, García P, Medina E, Romero C (2016) Oleuropein hydrolysis in natural green olives: importance of the endogenous enzymes. Food Chem 206:204–209

    Article  PubMed  Google Scholar 

  42. Aprile A, Negro C, Sabella E, Luvisi A, Nicolì F, Nutricati E, Vergine M, Miceli A, Blando F, De Bellis L (2019) Antioxidant activity and anthocyanin contents in olives (cv Cellina di Nardò) during ripening and after fermentation. Antioxidants 8(5):138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bianco A, Scalzo RL, Scarpati ML (1993) Isolation of cornoside from Olea europaea and its transformation into halleridone. Phytochemistry 32(2):455–457

    Article  CAS  Google Scholar 

  44. Esti M, Cinquanta L, La Notte E (1998) Phenolic compounds in different olive varieties. J Agric Food Chem 46(1):32–35

    Article  CAS  PubMed  Google Scholar 

  45. Petridis A, Therios I, Samouris G (2012) Genotypic variation of total phenol and oleuropein concentration and antioxidant activity of 11 Greek olive cultivars (Olea europaea L.). HortScience Horts 47(3):339–342

    Article  CAS  Google Scholar 

  46. Bastoni L, Bianco A, Piccioni F, Uccella N (2001) Biophenolic profile in olives by nuclear magnetic resonance. Food Chem 73(2):145–151

    Article  CAS  Google Scholar 

  47. Ivancic T, Jakopic J, Veberic R, Vesel V, Hudina M (2022) Effect of ripening on the phenolic and sugar contents in the meso- and epicarp of Olive fruits (Olea europaea L.) Cultivar ‘Leccino.’ Agriculture 12(9):1347

    Article  CAS  Google Scholar 

  48. Ferro MD, Lopes E, Afonso M, Peixe A, Rodrigues FM, Duarte MF (2020) Phenolic profile characterization of ‘Galega Vulgar’ and ‘Cobrançosa’ portuguese olive cultivars along the ripening stages. Appl Sci 10(11):3930

    Article  CAS  Google Scholar 

  49. Özcan MM, Fındık S, AlJuhaimi F, Ghafoor K, Babiker EE, Adiamo OQ (2019) The effect of harvest time and varieties on total phenolics, antioxidant activity and phenolic compounds of olive fruit and leaves. J Food Sci Technol 56(5):2373–2385

    Article  PubMed  PubMed Central  Google Scholar 

  50. Polari JJ, Crawford LM, Wang SC (2021) Cultivar determines fatty acids and phenolics dynamics for olive fruit and oil in super-high-density orchards. Agronomy 11(2):313

    Article  CAS  Google Scholar 

  51. Tang F, Li C, Yang X, Lei J, Chen H, Zhang C, Wang C (2023) Effect of variety and maturity index on the physicochemical parameters related to virgin olive oil from wudu (China). Foods 12(1):7

    Article  CAS  Google Scholar 

  52. Boskou D (2015) 1 - Olive fruit, table olives, and olive oil bioactive constituents. In: Boskou D (ed) Olive and olive oil bioactive constituents. AOCS Press, pp 1–30

    Google Scholar 

  53. Sahan Y, Cansev A, Gulen H (2013) Effect of processing techniques on antioxidative enzyme activities, antioxidant capacity, phenolic compounds, and fatty acids of table olives. Food Sci Biotechnol 22(3):613–620

    Article  CAS  Google Scholar 

  54. Chytiri A, Tasioula-Margari M, Bleve G, Kontogianni VG, Kallimanis A, Kontominas MG (2020) Effect of different inoculation strategies of selected yeast and LAB cultures on Conservolea and Kalamàta table olives considering phenol content, texture, and sensory attributes. J Sci Food Agric 100(3):926–935

    Article  CAS  PubMed  Google Scholar 

  55. Moreno-González R, Juan ME, Planas JM (2020) Table olive polyphenols: a simultaneous determination by liquid chromatography-mass spectrometry. J Chromatogr A 1609:460434

    Article  PubMed  Google Scholar 

  56. Charoenprasert S, Mitchell A (2012) Factors influencing phenolic compounds in table olives (Olea europaea). J Agric Food Chem 60(29):7081–7095

    Article  CAS  PubMed  Google Scholar 

  57. Mousouri E, Melliou E, Magiatis P (2014) Isolation of megaritolactones and other bioactive metabolites from ‘Megaritiki’ table olives and debittering water. J Agric Food Chem 62(3):660–667

    Article  CAS  PubMed  Google Scholar 

  58. García-Serrano P, Romero C, García-García P, Brenes M (2020) Influence of the type of alkali on the processing of black ripe olives. LWT 126:109318

    Article  Google Scholar 

  59. Boskou D (2015) 1—olive fruit, table olives, and olive oil bioactive constituents. In: D. Boskou, Editor, Olive and olive oil bioactive constituents, AOCS Press, Berlin. pp 1–30

  60. Mantzouridou F, Tsimidou MZ (2011) Microbiological quality and biophenol content of hot air-dried Thassos cv. table olives upon storage. Eur J Lipid Sci Technol 113(6):786–795

    Article  CAS  Google Scholar 

  61. Melliou E, Zweigenbaum JA, Mitchell AE (2015) Ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry quantitation of polyphenols and secoiridoids in California-style black ripe olives and dry salt-cured olives. J Agric Food Chem 63(9):2400–2405

    Article  CAS  PubMed  Google Scholar 

  62. Michailidou S, Trikka F, Pasentsis K, Petrovits GE, Kyritsi M, Argiriou A (2021) Insights into the evolution of Greek style table olives microbiome stored under modified atmosphere: biochemical implications on the product quality. Food Control 130:108286

    Article  CAS  Google Scholar 

  63. Tataridou M, Kotzekidou P (2015) Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157:H7 and Listeria monocytogenes. Int J Food Microbiol 208:122–130

    Article  CAS  PubMed  Google Scholar 

  64. Kaltsa A, Papaliaga D, Papaioannou E, Kotzekidou P (2015) Characteristics of oleuropeinolytic strains of Lactobacillus plantarum group and influence on phenolic compounds in table olives elaborated under reduced salt conditions. Food Microbiol 48:58–62

    Article  CAS  PubMed  Google Scholar 

  65. Johnson R, Melliou E, Zweigenbaum J, Mitchell AE (2018) Quantitation of Oleuropein and Related Phenolics in Cured Spanish-Style Green, California-Style Black Ripe, and Greek-Style Natural Fermentation Olives. J Agric Food Chem 66(9):2121–2128

    Article  CAS  PubMed  Google Scholar 

  66. Mastralexi A, Mantzouridou FT, Tsimidou MZ (2019) Evolution of safety and other quality parameters of the greek PDO table olives “Prasines Elies Chalkidikis” during industrial scale processing and storage. Eur J Lipid Sci Technol 121(3):1800171

    Article  Google Scholar 

  67. Mougiou N, Tsoureki A, Didos S, Bouzouka I, Michailidou S, Argiriou A (2023) Microbial and biochemical profile of different types of Greek table olives. Foods 12(7):1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lalas S, Athanasiadis V, Gortzi O, Bounitsi M, Giovanoudis I, Tsaknis J, Bogiatzis F (2011) Enrichment of table olives with polyphenols extracted from olive leaves. Food Chem 127(4):1521–1525

    Article  CAS  Google Scholar 

  69. Durante M, Tufariello M, Tommasi L, Lenucci MS, Bleve G, Mita G (2018) Evaluation of bioactive compounds in black table olives fermented with selected microbial starters. J Sci Food Agric 98(1):96–103

    Article  CAS  PubMed  Google Scholar 

  70. EFSA NDA Panel (EFSA Panel on Dietetic Products N a A, Turck D, Bresson J-L, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst K, Mangelsdorf I, McArdle H, Naska A, Neuhäuser-Berthold M, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé D, Vinceti M, Willatts P, Engel K-H, Marchelli R, Pöting A, Poulsen M, Schlatter J, Turla E, van Loveren H (2017) Scientific opinion on safety of hydroxytyrosol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J 15(3):4728

    Google Scholar 

  71. Fortes C, García-Vilas JA, Quesada AR, Medina MÁ (2012) Evaluation of the anti-angiogenic potential of hydroxytyrosol and tyrosol, two bio-active phenolic compounds of extra virgin olive oil, in endothelial cell cultures. Food Chem 134(1):134–140

    Article  CAS  Google Scholar 

  72. Lopez-Huertas E, Fonolla J (2017) Hydroxytyrosol supplementation increases vitamin C levels in vivo. A human volunteer trial. Redox Biol 11:384–389

    Article  CAS  PubMed  Google Scholar 

  73. Chandramohan R, Pari L, Rathinam A, Sheikh BA (2015) Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Chem Biol Interact 229:44–54

    Article  CAS  PubMed  Google Scholar 

  74. Chandramohan R, Pari L (2016) Anti-inflammatory effects of tyrosol in streptozotocin-induced diabetic Wistar rats. J Funct Foods 27:17–28

    Article  CAS  Google Scholar 

  75. Fki I, Bouaziz M, Sahnoun Z, Sayadi S (2005) Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorg Med Chem 13(18):5362–5370

    Article  CAS  PubMed  Google Scholar 

  76. Poudyal H, Lemonakis N, Efentakis P, Gikas E, Halabalaki M, Andreadou I, Skaltsounis L, Brown L (2017) Hydroxytyrosol ameliorates metabolic, cardiovascular and liver changes in a rat model of diet-induced metabolic syndrome: Pharmacological and metabolism-based investigation. Pharmacol Res 117:32–45

    Article  CAS  PubMed  Google Scholar 

  77. Franco-Ávila T, Moreno-González R, Juan ME, Planas JM (2023) Table olive elicits antihypertensive activity in spontaneously hypertensive rats. J Sci Food Agric 103(1):64–72

    Article  PubMed  Google Scholar 

  78. Kountouri AM, Mylona A, Kaliora AC, Andrikopoulos NK (2007) Bioavailability of the phenolic compounds of the fruits (drupes) of Olea europaea (olives): impact on plasma antioxidant status in humans. Phytomedicine 14(10):659–667

    Article  CAS  PubMed  Google Scholar 

  79. Drakou M, Birmpa A, Koutelidakis AE, Komaitis M, Panagou EZ, Kapsokefalou M (2015) Total antioxidant capacity, total phenolic content and iron and zinc dialyzability in selected Greek varieties of table olives, tomatoes and legumes from conventional and organic farming. Int J Food Sci Nutr 66(2):197–202

    Article  CAS  PubMed  Google Scholar 

  80. Panagou EZ (2006) Greek dry-salted olives: monitoring the dry-salting process and subsequent physico-chemical and microbiological profile during storage under different packing conditions at 4 and 20 °C. LWT Food Sci Technol 39(4):323–330

    Article  CAS  Google Scholar 

  81. Panagou EZ, Tassou CC, Katsaboxakis KZ (2002) Microbiological, physicochemical and organoleptic changes in dry-salted olives of Thassos variety stored under different modified atmospheres at 4 and 20 °C. Int J Food Sci Technol 37(6):635–641

    Article  CAS  Google Scholar 

  82. Romero C, García P, Brenes M, García A, Garrido A (2002) Phenolic compounds in natural black Spanish olive varieties. Eur Food Res Technol 215(6):489–496

    Article  CAS  Google Scholar 

Download references

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

Writing—review and editing, MK; investigation, validation, and writing—original draft, EN; conceptualization, supervision, and writing—review and editing, EZP. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Maria Kazou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Compliance with Ethics requirements

This study does not contain any studies with human participants or animal performed of any of the authors.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazou, M., Nikolopoulou, E. & Panagou, E.Z. Greek table olives: an overview on the impact of processing elaborations on the content of biophenols and related nutritional implications. Eur Food Res Technol 249, 3151–3164 (2023). https://doi.org/10.1007/s00217-023-04356-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04356-0

Keywords

Navigation