Skip to main content

The Antimicrobial Activities of Oleuropein and Hydroxytyrosol

  • Chapter
  • First Online:
Promising Antimicrobials from Natural Products

Abstract

Several studies have reported that olive leaf extract and its constituents, particularly oleuropein and hydroxytyrosol, have health benefits including antioxidant and antimicrobial properties. Oleuropein and hydroxytyrosol have significant in vitro activity against fungi including opportunistic pathogen Candida albicans. Both compounds target virulence factors essential for the establishment of C. albicans infection. Both biomolecules express wide antibacterial activity in vitro. On the bacterial model Staphylococcus aureus, different targets have been detected. Oleuropein and hydroxytyrosol also interact with biofilm formation and could potentiate the activity of ampicillin. Considering the growing resistance to existing therapeutics has triggered the need for the development of new antimicrobial drugs, based on the presented results in this chapter, it seems that oleuropein and its derivative hydroxytyrosol could be considered as promising candidates for the treatment and/or prevention of candidiasis, and local infections caused by bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATCC:

American Type Culture Collection

ATP:

Adenosine triphosphate

BC:

Bactericidal concentration

CSH:

Cell surface hydrophobicity

DMPG:

Dimyristoylphosphatidylglycerol

DNA:

Deoxyribonucleic acid

EUCAST:

European Committee on Antimicrobial Susceptibility Testing

EVOO:

Extra virgin olive oil

GAE:

Gallic acid equivalent

HPLC-DAD:

High-performance liquid chromatography with a diode-array detector

IC:

Inhibitory concentration

MFC:

Minimum fungicidal concentration

MIC:

Minimum inhibitory concentration

MRSA:

Methicillin-resistant Staphylococcus aureus

SAP:

Secreted aspartyl proteinases

References

  • Aliabadi MA (2012) Antimicrobial activity of olive leaf aqueous extract. Ann Biol Res 3:4189–4191

    Google Scholar 

  • Aziz NH, Farag SE, Mousa LA, Abo-Zaid MA (1998) Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 93:43–54

    CAS  PubMed  Google Scholar 

  • Bisignano G, Tomaino A, Lo Cascio R, Crisafi G, Uccella N, Saija A (1999) On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J Pharm Pharmacol 51:971–974

    Article  CAS  PubMed  Google Scholar 

  • Boskou D (1996) Olive oil: chemistry and technology. AOCS Press, Champaign

    Google Scholar 

  • Brown D (2015) Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 14:821–832

    Article  CAS  PubMed  Google Scholar 

  • Castro M, Romero C, de Castro A, Vargas J, Medina E, Millán R, Brenes M (2012) Assessment of Helicobacter pylori eradication by virgin olive oil. Helicobacter 17:305–311

    Article  CAS  PubMed  Google Scholar 

  • Caturla N, Perez Fons L, Estepa A, Micol V (2005) Differential effects of oleuropein, a biophenol from Olea europea, on anionic and zwiterione phospholipid model membranes. Chem Phys Lipids 137:2–17

    Article  CAS  PubMed  Google Scholar 

  • Cinar D (2009) Purification and antimicrobial properties of Oleuropein. Thames Valley University, PhD Thesis. Accessed 19 Nov 2020. http://repository.uwl.ac.uk/id/eprint/381

  • Costa CR, Jesuíno RSA, Lemos J dA, Fernandes O d FL, Hasimoto e Souza LK, Passos XS, Silva M d RR (2010) Effects of antifungal agents in sap activity of Candida albicans isolates. Mycopathologia 169:91–98

    Article  PubMed  CAS  Google Scholar 

  • Crisante F, Tafesco V, Donelli FD, Vuotto C, Martinelli A, D’Ilario L, Pietrelli L, Francolini I, Piozzi A (2015) Antioxidant hydroxytyrosol-based polyacrylate with antimicrobial and antiadhesive activity versus Staphylococcus epidermidis. Adv Exp Med Biol 901:25–36

    Article  CAS  Google Scholar 

  • Dhamgaye S, Devaux F, Vandeputte P, Khandelwal NK, Sanglard D, Mukhopadhyay G, Prasad R (2014) Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida albicans. PLoS One 9(8):e104554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faria NCG, Kim JH, Gonçalves LAP, Martins ML, Chan KL, Campbell BC (2011) Enhanced activity of antifungal drugs using natural phenolics against yeast strains of Candida and Cryptococcus. Lett Appl Microbiol 52:506–513

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, Henika PR, Levin CE (2013) Bactericidal activities of health-promoting, food-derived powders against the foodborne pathogens Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. Food Microbiol Saf 78:270–275

    Google Scholar 

  • Furneri PM, Bisignano G (2010) Usage of hydroxytyrosol for antimycoplasmal activity. Olives and olive oil in health and disease prevention 1283–1288

    Google Scholar 

  • Furneri PM, Marino A, Saija A, Uccella N, Bisignio G (2002) In vitro antimycoplasmal activity of oleuropein. Int J Antimicrob Agents 20:293–296

    Google Scholar 

  • Furneri PM, Piperno A, Sajia A, Bisignano G (2004) Antimycoplasmal activity of hydroxytyrosol. Antimicrob Agents Chemother 48(12):4892–4894

    Google Scholar 

  • Halawi MH, Rahman SMA, Yusef H (2015) Comparative study of the antifungal activity of Olea europaea L. against some pathogenic Candida albicans isolates in Lebanon. Int J Curr Microbiol App Sci 4:970–984

    CAS  Google Scholar 

  • Hassen I, Casabianca H, Hosni K (2015) Biological activities of the natural antioxidant oleuropein: exceeding the expectation-a mini-review. J Funct Foods 18:926–940

    Article  CAS  Google Scholar 

  • Huang CL, Sumpio BE (2008) Olive oil, the Mediterranean diet, and cardiovascular health. J Am Coll Surg 207:407–416

    Article  PubMed  Google Scholar 

  • Ishida K, de Mello JC, Cortez DA, Filho BP, Ueda-Nakamura T, Nakamura CV (2006) Influence of tannins from Stryphnodendron adstringens on growth and virulence factors of Candida albicans. J Antimicrob Chemother 58:942–949

    Article  CAS  PubMed  Google Scholar 

  • Jacob M, Walker LA (2005) Natural products and antifungal drug discovery. Methods Mol Med 118:83–109

    CAS  PubMed  Google Scholar 

  • Juven B, Henis Y, Jacoby B (1972) Studies of the antimicrobial action of oleuropein. J Appl Bacteriol 35:559–567

    Article  CAS  PubMed  Google Scholar 

  • Karygianni L, Cecere M, Skaltsounis AL, Argyropoulou A, Hellwig E, Aligiannis N, Wittmer A, Al-Ahmad A (2014) High-level antimicrobial efficacy of representative Mediterranean natural plant extracts against oral microorganisms. Biomed Res Int 2014:839019

    Article  PubMed  PubMed Central  Google Scholar 

  • Karygianni L, Cecere M, Arggyropoulou A, Hellwig E, Skaltsounis AL, Wittmer A, Tchorz JP, Al-Ahmad A (2019) Compounds from Olea europaea and Pistacia lentiscus inhibit oral microbial growth. BMC Complement Altern Med 16:51

    Article  Google Scholar 

  • Khan MF, Murphy CD (2021) 3-Hydroxytyrosol regulates biofilm growth in Cunninghamella elegans. Fungal Biol 125(3):211–217

    Article  CAS  PubMed  Google Scholar 

  • Khan Y, Panchal S, Vyas N, Butani A, Kumar V (2007) Olea europaea: a phyto-pharmacological review. Pharmacogn Rev 1:114–118

    Google Scholar 

  • Korukluoglu M, Sahan Y, Yigit A, Ozer ET, Gücer S (2010) Antibacterial activity and chemical constitutions of Olea europaea L. leaf extracts. J Food Process Preserv 34:383–396

    Article  CAS  Google Scholar 

  • Kosalec I, Ramić S, Jelić D, Antolović R, Pepeljnjak S, Kopjar N (2011) Assessment of tryptophol genotoxicity in four cell lines in vitro: a pilot study with alklaine comet assay. Arh Hig Rada Toksikol 62:41–49

    Article  CAS  PubMed  Google Scholar 

  • Koutsoumanis K, Tassou CC, Taoukis PS, Nychas GJE (1998) Modelling the effectiveness of a natural antimicrobial on Salmonella enteriditis as a function of concentration, temperature, and pH, using conductance measurements. J Appl Microbiol 84:981–987

    Article  CAS  PubMed  Google Scholar 

  • Kubo I, Matsumoto A, Takase I (1985) A multichemical defence mechanism of bitter olive Olea europaea (Oleaceae): is oleuropein a phytoalexin precursor? J Chem Ecol 11:251–263

    Article  CAS  PubMed  Google Scholar 

  • Lim A, Subhan N, Jazayeri JA, John G, Vanniasinkam T, Obied HK (2016) Plant phenols as antibiotic boosters: in vitro interaction of olive leaf phenols with ampicillin. Phytother Res 30:503–509

    Article  CAS  PubMed  Google Scholar 

  • Markin D, Duek L, Berdicevky I (2003) In vitro antimicrobial activity of olive leaves. Mycoses 46:132–136

    Google Scholar 

  • Medina E, de Castro A, Romero C, Brenes M (2006) Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: correlation with antimicrobial activity. J Agric Food Chem 54:4954–4961

    Article  CAS  PubMed  Google Scholar 

  • Medina E, Brenes M, Romero C, Garcia A, de Castro A (2007) Main antimicrobial compounds in table olives. J Agric Food Chem 55:4954–4961

    Google Scholar 

  • Medina-Martínez MS, Truchado P, Castro-Ibáñez I, Allende A (2015) Antimicrobial activity of hydroxytyrosol: a current controversy. Biosci Biotechnol Biochem 80:810–810

    Google Scholar 

  • Menchetti L, Tattichi A, Esposto S, Servili M, Ranucci D, Branciari R, Miraglia D (2020) The influence of phenolic extract from olive vegetation water and storage temperature on the survival of Salmonella Enteritidis inoculated on mayonnaise. Food Sci Technol 129:109648

    CAS  Google Scholar 

  • Mukesi M, Iweriebor BC, Obi LC, Nwodo UU, Moyo SR, Okoh AI (2019) The activity of commercial antimicrobials, and essential oils and ethanolic extracts of Olea europaea on Streptococcus agalactiae isolated from pregnant women. BMC Complement Altern Med 19:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Obied HK, Bedgood DR, Prenzler PD, Robards K (2007) Bioscreening of Australian olive mill waste extracts: biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem Toxicol 45:1238–1248

    Article  CAS  PubMed  Google Scholar 

  • Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Garcia F, Peragon J (2010) Phenol metabolism in the leaves of the olive tree (Olea europaea L.) cv. Picual, Verdial, Arbequina, and Frantoio during ripening. J Agric Food Chem 58:12440–12448

    Article  CAS  PubMed  Google Scholar 

  • Pereira JA, Pereira APG, Ferreira ICFR, Valentão P, Andrade PB, Seabra R, Estevinho L, Bento A (2006) Table olives from Portugal: phenolic compounds, antioxidant potential, and antimicrobial activity. J Agric Food Chem 54 (22):8425–8431

    Google Scholar 

  • Pereira AP, Ferreira IC, Marcelino F, Valentão P, Andrade PB, Seabra R, Estevinho L, Bento A, Pereira JA (2007) Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 12:1153–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahioui B, Zine El Aabidine A, Baissac Y, El Boustani E, Khadari B, Jay-Allemand C, El Modafar C (2009) Phanolic compounds of olive tree leaves and their relationship with the resistance to the leaf-spot disease caused by Spilocaea oleaginea. Am Euroasian J Agric Environ Sci 5:204–214

    CAS  Google Scholar 

  • Romani A, Ieri F, Urciuoli S, Noce A, Marrone G, Nedlani C, Bernini R (2019) Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 11:1776

    Article  CAS  PubMed Central  Google Scholar 

  • Romero C, Medina E, Vargas J, Brenes M, DeCastro A (2007) In vitro activity of olive oil polyphenols against Helicobacter pylori. J Agric Food Chem 55:680–686

    Article  CAS  PubMed  Google Scholar 

  • Serrano P, Yago MD, Mañas M, Calpena R, Mataix J, Martínez-Victoria E (1997) Influence of type of dietary fat (olive and sunflower oil) upon gastric acid secretion and release of gastrin, somatostatin, and peptide YY in man. Dig Dis Sci 42:626–633

    Article  CAS  PubMed  Google Scholar 

  • Servili M, Selvaggini R, Esposto S, Taticchi A, Montedoro G, Morozzi G (2004) Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspect of production that affect their occurrence in the oil. J Chromatogr 1504:113–127

    Article  Google Scholar 

  • Shareck J, Belhumeur P (2011) Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryot Cell 10:1004–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiry N, Khoshnoodifar K, Alavinia SJ (2020) Cutaneous mucosal immune-parameters and intestinal immune-relevant genes expression in streptococcal-infected rainbow trout (Oncorhynchus mykiss): a comparative study with the administration of florfenicol and olive leaf extract. Fish Shellfish Immunol 107:403–410

    Article  CAS  PubMed  Google Scholar 

  • Suarez M, Romero MP, Motilva MJ (2010) Development of a phenol-enriched olive oil with phenolic compounds from olive cake. J Agric Food Chem 58:10396–10403

    Article  CAS  PubMed  Google Scholar 

  • Sudjana AN, D’Orazio C, Ryan V, Rasool N, Ng J, Islam N, Riley TV, Hammer KA (2009) Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int J Antimicrob Agents 33:461–463

    Article  CAS  PubMed  Google Scholar 

  • Tafesh A, Najami N, Jadoun J, Halahlih F, Riepl H, Azaizeh (2011) Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evid Based Complement Alternat Med:ID431021

    Google Scholar 

  • Taits NS (1986) Use of olive oil in the treatment of ulcer patients. Urach Delo 7:67–70

    Google Scholar 

  • Tassou CC, Nychas GJE (1995) Inhibition of Salmonella enteritidis by oleuropein in broth and in a model Food system. Lett Appl Microbiol 20:120–124

    Google Scholar 

  • Tassou CC, Nychas GJE (1994) Inhibition of Staphylococcus aureus by olive phenolics in broth and in a model food system. J Food Prot 57:120–124

    Article  CAS  PubMed  Google Scholar 

  • Thielmann J, Kohnen S, Hauser C (2017) Antimicrobial activity of Olea europaea Linné extracts and their applicability as natural food preservative agents. Int J Food Microbiol 251:48–66

    Article  CAS  PubMed  Google Scholar 

  • Tranter HS, Tassou CC, Nychas GJ (1993) The effect of the olive phenolic compound, oleuropein, on growth and enterotoxin B production by Staphylococcus aureus. J Appl Bacteriol 4:253–259

    Article  Google Scholar 

  • Tuck KL, Hayball PJ (2002) Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem 13:636–644

    Google Scholar 

  • Zanichelli D, Baker TA, Clifford MN, Adams MR (2005) Inhibition of Staphylococcus aureus by Oleuropein is mediated by hydrogen peroxide. J Food Prot 68:1492–1496

    Article  CAS  PubMed  Google Scholar 

  • Zorić N, Horvat I, Kopjar N, Vučemilović A, Kremer D, Tomić S, Kosalec I (2013) Hydroxytyrosol expresses antifungal activity in vitro. Curr Drug Targets 14:992–998

    Article  PubMed  CAS  Google Scholar 

  • Zorić N, Kopjar N, Bobnjarić I, Horvat I, Tomić S, Kosalec I (2016a) Antifungal activity of oleuropein against Candida albicans – the in vitro study. Molecules 21:1631

    Article  PubMed Central  CAS  Google Scholar 

  • Zorić N, Kopjar N, Oršolić N, Tomić S, Kosalec I (2016b) Olive leaf extract activity against Candida albicans and C. dubliniensis – the in vitro viability study. Acta Pharma 66:411–421

    Article  CAS  Google Scholar 

  • Zorić N, Kopjar N, Vuković Rodriguez J, Tomić S, Kosalec I (2021) Protective effects of olive oil phenolics oleuropein and hydroxytyrosol against hydrogen peroxide-induced DNA damage in human peripheral lymphocytes. Acta Pharma 71:131–141

    Article  CAS  Google Scholar 

  • Zuzarte M, Gonçalves MJ, Cavaleiro C, Canhoto J, Vale-Silva L, Silva MJ, Pinto E, Salgueiro L (2011) Chemical composition and antifungal activity of the essential oils of Lavandula viridis LʼHér. J Med Microbiol 60:612–618

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Kosalec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zorić, N., Kosalec, I. (2022). The Antimicrobial Activities of Oleuropein and Hydroxytyrosol. In: Rai, M., Kosalec, I. (eds) Promising Antimicrobials from Natural Products. Springer, Cham. https://doi.org/10.1007/978-3-030-83504-0_5

Download citation

Publish with us

Policies and ethics