Skip to main content

Advertisement

Log in

A review on photonic crystal materials in food detection

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

From farm to plate, food meets various challenges and pollution. Food detection is essential to ensure food safety. Although detection techniques have obtained great development, the accuracy, sensitivity and operating conditions still have room for improvement. Composed of dielectric media with different refractive indices to form a periodic structure, an optical material named photonic crystal (PC) can offer a breakthrough. Owing to the periodic structure, Bragg diffraction happens with optical waves propagating in a PC and photonic band gap (PBG), a characteristic parameter of the PC, will form. The properties of PBG are widely used in the field of detection. Combined with the techniques of biology, immunology, optics and fluorescence etc., PCs can play the role of specific, efficient, sensitive and convenient sensors in food detection. At present, PCs have been successfully applied to analyze hazardous substances in food, such as microorganisms, biotoxins, veterinary drug residues, pesticide residues, excessive additives, illegal additives, environmental pollutants and heavy metal composition. This article introduces PCs about the fabrication methods, principles and techniques applied in detection and research progress in food detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Fred F, Huei-Shyong W, Suresh M (2018) Food safety in the 21st century. Biomed J 41:88–95. https://doi.org/10.1016/j.bj.2018.03.003

    Article  Google Scholar 

  2. Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, Tong W, Hong H (2019) Persistent organic pollutants in food: contamination sources, health effects and detection methods. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16224361

    Article  PubMed  PubMed Central  Google Scholar 

  3. Givanoudi S, Heyndrickx M, Depuydt T, Khorshid M, Robbens J, Wagner P (2023) A review on bio- and chemosensors for the detection of biogenic amines in food safety applications: the status in 2022. Sensors (Basel). https://doi.org/10.3390/s23020613

    Article  PubMed  Google Scholar 

  4. Mei J, Zhao F, Runqi X, Huang Y (2022) A review on the application of spectroscopy to the condiments detection: from safety to authenticity. Crit Rev Food Sci Nutr 62:6374–6389. https://doi.org/10.1080/10408398.2021.1901257

    Article  CAS  PubMed  Google Scholar 

  5. Yablonovitch (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059–2062. https://doi.org/10.1103/PhysRevLett.58.2059

    Article  CAS  PubMed  Google Scholar 

  6. John (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486–2489. https://doi.org/10.1103/PhysRevLett.58.2486

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Xinhua Hu, Li Y, Jia W, Chun Xu, Liu X, Zi J (2002) Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures. Appl Phys Lett 80:4291–4293. https://doi.org/10.1063/1.1484547

    Article  CAS  Google Scholar 

  8. Bogomolov VN, Kurdyukov DA, Prokof’ev AV, Samoilovich SM (1996) Effect of a photonic band gap in the optical range on solid-state SiO2 cluster lattices—opals. Jetp Lett 63:520–525. https://doi.org/10.1134/1.567059

    Article  Google Scholar 

  9. Velev OD, Jede TA, Lobo RF, Lenhoff AM (1997) Porous silica via colloidal crystallization. Nature 389:447–448. https://doi.org/10.1038/38921

    Article  CAS  Google Scholar 

  10. Tsunekawa S, Barnakov YuA, Poborchii VV, Samoilovich SM, Kasuya A, Nishina Y (1997) Characterization of precious opals: AFM and SEM observations, photonic band gap, and incorporation of CdS nano-particles. Microporous Mater 8:275–282. https://doi.org/10.1016/S0927-6513(96)00089-2

    Article  CAS  Google Scholar 

  11. Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys. https://doi.org/10.1088/0034-4885/71/7/076401

    Article  Google Scholar 

  12. Zhang J, Zhu Z, Ziyi Yu, Ling L, Wang C, Chen Su (2019) Large-scale colloidal films with robust structural colors. Mater Horizons 6:90–96. https://doi.org/10.1039/c8mh00248g

    Article  CAS  Google Scholar 

  13. Park HY, Cho DH, Kee CS, Kim K, Lim H (2004) Characteristics of resonant modes of photonic crystal cavities. Proc SPIE. https://doi.org/10.1117/12.528966

    Article  Google Scholar 

  14. Li R, Li L, Wang B, Liping Yu (2021) Preparation of quantum dot-embedded photonic crystal hydrogel and its application as fluorescence sensor for the detection of nitrite. Nanomaterials. https://doi.org/10.3390/nano11113126

    Article  PubMed  PubMed Central  Google Scholar 

  15. Block ID, Mathias PC, Ganesh N, Jones SI, Dorvel BR, Chaudhery V, Vodkin LO, Bashir R, Cunningham BT (2009) A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces. Opt Express 17:13222–13235. https://doi.org/10.1364/oe.17.013222

    Article  CAS  PubMed  Google Scholar 

  16. Song L, Li J, Li H, Chang Y, Dai S, Ruimin Xu, Dou M, Li Q, Lv G, Zheng T (2022) Highly sensitive SERS detection for Aflatoxin B1 and Ochratoxin A based on aptamer-functionalized photonic crystal microsphere array. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2022.131778

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yablonovitch E, Gmitter TJ, Leung KM (1991) Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys Rev Lett 67:2295–2298. https://doi.org/10.1103/PhysRevLett.67.2295

    Article  CAS  PubMed  Google Scholar 

  18. Wendt JR, Vawter GA, Gourley PL, Brennan TM, Hammons BE (1993) Nanofabrication of photonic lattice structures in GaAs/AlGaAs. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 11:2637–2640. https://doi.org/10.1116/1.586641

    Article  CAS  Google Scholar 

  19. Romanato F, Kumar R, Di FE (2005) Interface lithography: a hybrid lithographic approach for the fabrication of patterns embedded in three-dimensional structures. Nanotechnology 16:40. https://doi.org/10.1088/0957-4484/16/1/010

    Article  CAS  Google Scholar 

  20. Feigel A, Kotler Z, Sfez B, Arsh A, Klebanov M, Lyubin V (2000) Chalcogenide glass-based three-dimensional photonic crystals. Appl Phys Lett 77:3221–3223. https://doi.org/10.1063/1.1326042

    Article  CAS  Google Scholar 

  21. Özbay E, Abeyta A, Tuttle G, Tringides M, Biswas R, Chan CT, Soukoulis CM, Ho KM (1994) Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods. Phys Rev B 50:1945–1938. https://doi.org/10.1103/PhysRevB.50.1945

    Article  Google Scholar 

  22. Zhenlin Wu, Qi Y, Yin X, Yang X, Chen C, Jingying Yu, Jiachen Yu, Lin Y, Hui F, Liu P, Liang Y, Zhang Y, Zhao M (2019) Polymer-based device fabrication and applications using direct laser writing technology. Polymers. https://doi.org/10.3390/polym11030553

    Article  Google Scholar 

  23. Tondiglia VP, Natarajan LV, Sutherland RL, Tomlin D, Bunning TJ (2002) Holographic formation of electro-optical polymer-liquid crystal photonic crystals. Adv Mater 14:187–191. https://doi.org/10.1002/1521-4095(20020205)14:3%3C187::AID-ADMA187%3E3.0.CO;2-O

    Article  CAS  Google Scholar 

  24. Jixiang Z, Min Li, Rogers R, Meyer W, Ottewill RH, Russel WB, Chaikin PM (1997) Crystallization of hard-sphere colloids in microgravity. Nature 387:883–885. https://doi.org/10.1038/43141

    Article  CAS  Google Scholar 

  25. Jiang P, Bertone JF, Hwang KS, Colvin VL (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11:2132–2140. https://doi.org/10.1021/cm990080+

    Article  CAS  Google Scholar 

  26. Wang D, Liu H, He J, Liu L (2012) Progress in preparation of functional films by spin-coatin. Imaging Sci Photochem 30:91–101

    CAS  Google Scholar 

  27. Rogach AL, Kotov NA, Koktysh DS, Ostrander JW, Ragoisha GA (2000) Electrophoretic deposition of latex-based 3D colloidal photonic crystals: a technique for rapid production of high-quality opals. Chem Mater. https://doi.org/10.1021/CM000274L

    Article  Google Scholar 

  28. Arash Azari J, Crassous Jérôme M, Adriana M, Bialik E, Schurtenberger P, Stenhammar J, Linse P (2017) Directed self-assembly of polarizable ellipsoids in an external electric field. Langmuir 33:13834–13840. https://doi.org/10.1021/acs.langmuir.7b02040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheon J, Kang N-J, Lee S-M, Lee J-H, Yoon J-H, Sang JO (2004) Shape evolution of single-crystalline iron oxide nanocrystals. J Am Chem Soc 126:1950–1951. https://doi.org/10.1021/ja038722o

    Article  CAS  PubMed  Google Scholar 

  30. Holland BT, Blanford CF, Andreas S (1998) Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281:538–540. https://doi.org/10.1126/science.281.5376.538

    Article  CAS  PubMed  Google Scholar 

  31. Jegj W, Vos WL (1998) Preparation of photonic crystals made of air spheres in titania. Science 281:802–804. https://doi.org/10.1126/science.281.5378.802

    Article  Google Scholar 

  32. Cui L, Zhang Y, Wang J, Ren Y, Song Y, Jiang L (2009) Ultra-fast fabrication of colloidal photonic crystals by spray coating. Macromol Rapid Commun 30:598–603. https://doi.org/10.1002/marc.200800694

    Article  CAS  PubMed  Google Scholar 

  33. Cui L, Li Y, Wang J, Tian E, Zhanga X, Zhang Y, Song Y, Jiang L (2009) Fabrication of large-area patterned photonic crystals by ink-jet printing. J Mater Chem 19:5499–5502. https://doi.org/10.1039/B907472D

    Article  CAS  Google Scholar 

  34. Pan W, Xiaogang Wu, Yuhao Lu, Ye Z, Tang X (2020) Study on the characteristics of humidity sensitive for one-dimensional photonic crystal with defects. J Quantum Opt 26:382–391. https://doi.org/10.3788/JQO20202604.0703

    Article  Google Scholar 

  35. Christoph F, Thomas H, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed 53:3318–3335. https://doi.org/10.1002/anie.201307828

    Article  CAS  Google Scholar 

  36. Zhu S, Tao L, Zhang D (2017) Progress in stimuli-responsive photonic crystals with biological structures. Acta Polym Sin. https://doi.org/10.11777/j.issn1000-3304.2017.16271

    Article  Google Scholar 

  37. Weissman JM, Sunkara HB, Tse AS, Asher SA (1996) Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 274:959–963. https://doi.org/10.1126/science.274.5289.959

    Article  CAS  PubMed  Google Scholar 

  38. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832. https://doi.org/10.1038/39834

    Article  CAS  PubMed  Google Scholar 

  39. Pedersen CJ (1988) The discovery of crown ethers. Science 241:536–540. https://doi.org/10.1126/science.241.4865.536

    Article  CAS  PubMed  Google Scholar 

  40. Liu Y, Li Y, Xiaojie J, Xie R, Wang W, Liu Z, Chu L (2021) Progress in lead ion detection technologies based on 18-crown-6. CIESC J 72:192–204. https://doi.org/10.11949/0438-1157.20201161

    Article  CAS  Google Scholar 

  41. Goponenko AV, Asher SA (2005) Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ sensing materials. J Am Chem Soc 127:10753–10759. https://doi.org/10.1021/ja051456p

    Article  CAS  PubMed  Google Scholar 

  42. Dhamodaran A, Arindam S, Tushar J (2011) Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water. Soft Matter 7:2592–2599. https://doi.org/10.1039/c0sm01136c

    Article  CAS  Google Scholar 

  43. Reese Chad E, Asher Sanford A (2003) Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments. Anal chem 75:3915–3918. https://doi.org/10.1021/ac034276b

    Article  CAS  PubMed  Google Scholar 

  44. Sharma AC, Jana T, Kesavamoorthy R, Shi LJ, Virji MA, Finegold DN, Asher SA (2004) A general photonic crystal sensing motif: creatinine in bodily fluids. J Am Chem Soc 126:2971–2977. https://doi.org/10.1021/ja038187s

    Article  CAS  PubMed  Google Scholar 

  45. Lee YJ, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15:563–566. https://doi.org/10.1002/adma.200304588

    Article  CAS  Google Scholar 

  46. Hong W, Li W, Xiaobin Hu, Zhao B, Zhang F, Zhang Di (2011) Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. J Mater Chem 21:17193–17201. https://doi.org/10.1039/c1jm12785c

    Article  CAS  Google Scholar 

  47. Chen G, Tang W, Wang X, Zhao X, Chen C, Zhu Z (2019) Applications of hydrogels with special physical properties in biomedicine. Polymers. https://doi.org/10.3390/polym11091420

    Article  PubMed  PubMed Central  Google Scholar 

  48. Myaing MT, Ye JY, Norris TB, Thomas T, Baker JR, Wadsworth WJ, Bouwmans G, Knight JC, Russell PSJ (2003) Enhanced two-photon biosensing with double-clad photonic crystal fibers. Opt Lett 28:1224–1226. https://doi.org/10.1364/ol.28.001224

    Article  CAS  PubMed  Google Scholar 

  49. Chen L, Wang X, Wenhui Lu, Xiaqing Wu, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211. https://doi.org/10.1039/c6cs00061d

    Article  CAS  PubMed  Google Scholar 

  50. Wang X, Chen G, Dong Z, Zhu Z, Chen C (2020) Progress in molecular imprinted photonic crystals. Cailiao Gongcheng 48:60–72. https://doi.org/10.11868/j.issn.1001-4381.2019.000539

    Article  CAS  Google Scholar 

  51. Hou J, Zhang H, Yang Q, Li M, Jiang L, Song Y (2015) Hydrophilic-hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline. Small 11:2738–2742. https://doi.org/10.1002/smll.201403640

    Article  CAS  PubMed  Google Scholar 

  52. Bai H-Y, Del Campo FJ, Tsai Y-C (2013) Sensitive electrochemical thrombin aptasensor based on gold disk microelectrode arrays. Biosens Bioelectron 42:17–22. https://doi.org/10.1016/j.bios.2012.10.063

    Article  CAS  PubMed  Google Scholar 

  53. Luo P, Yi L, Xia Y, Huajian Xu, Xie G (2014) Aptamer biosensor for sensitive detection of toxin A of Clostridium difficile using gold nanoparticles synthesized by Bacillus stearothermophilus. Biosens Bioelectron 54:217–221. https://doi.org/10.1016/j.bios.2013.11.013

    Article  CAS  PubMed  Google Scholar 

  54. Dong B (2020) Study on rapid detection of T-2 toxin in food by photonic crystal sensing technology. Dissertation, Inner Mongolia Medial University

  55. Kilian KA, Lai LMH, Magenau A, Cartland S, Bocking T, Di Girolamo N, Gal M, Gaus K, Gooding JJ (2009) Smart tissue culture: in situ monitoring of the activity of protease enzymes secreted from live cells using nanostructured photonic crystals. Nano Lett 9:2021–2025. https://doi.org/10.1021/nl900283j

    Article  CAS  PubMed  Google Scholar 

  56. Huang J (2021) Preparation of gelatinase sensitive photonic crystal membrane and its bacterial detection performance. Dissertation, Wuhan Textile University

  57. Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492–1505. https://doi.org/10.1103/PhysRev.109.1492

    Article  CAS  Google Scholar 

  58. Tomoyuki Y, Axel S, Hao C, Diana H, Dennis D (2001) Optical characterization of two-dimensional photonic crystal cavities with indium arsenide quantum dot emitters. Appl Phys Lett. https://doi.org/10.1063/1.1377851

    Article  Google Scholar 

  59. Scheuer J, Yariv A (2004) Circular photonic crystal resonators. Phys Rev E. https://doi.org/10.1103/PhysRevE.70.036603

    Article  Google Scholar 

  60. Hennessy Kevin J, Reese Chuck P, Badolato A, Atac Imamoglu M, Pierre P, Hu Evelyn L (2004) High-Q photonic crystal cavities with embedded quantum dots. Proc SPIE. https://doi.org/10.1117/12.517229

    Article  Google Scholar 

  61. Dixit Y, Tiwari S, Dixit A (2021) Analysis of photonic crystal cavity based temperature biosensor using indirect bandgap materials. Optik. https://doi.org/10.1016/j.ijleo.2021.167221

    Article  Google Scholar 

  62. Nie T, Han Z, Gou Z, Wang C, Tian H (2022) High anti-interference dual-parameter sensor using EIT-like effect photonic crystal cavity coupled system: publisher’s note. Appl Opt 61:2648–2648. https://doi.org/10.1364/ao.457788

    Article  PubMed  Google Scholar 

  63. Bo L (2014) Study on sensing characteristics of surface defect photonic crystal. Dissertation, Yanshan University

  64. Panda A, Pukhrambam PD (2021) Investigation of defect based 1D photonic crystal structure for real-time detection of waterborne bacteria. Phys B Condens Matter. https://doi.org/10.1016/j.physb.2021.412854

    Article  Google Scholar 

  65. Chen W (2008) The principle and application advance of suspension array technology. J Chengdu Med Coll 8:225–231

    Google Scholar 

  66. Hua X, Dayong G, Chunling H, Li Y, Shi L, Liu C, Zhao C, Zhang N, Yunqing X, Jiang S (2012) Establishment of a multiplex luminex-based detection method for four kinds of important biological terrorism toxins. Chin J Front Health Quar 35:154–160

    Google Scholar 

  67. Yang Y (2016) Structure-switching signaling aptamers detection for mycotoxins in cereal samples based on photonic crystal microsphere suspensionarray. Dissertation, Nanjing Normal University

  68. Shen P, Li W, Ding Z, Deng Y, Liu Y, Zhu X, Cai T, Li J, Zheng T (2018) A competitive aptamer chemiluminescence assay for ochratoxin A using a single silica photonic crystal microsphere. Anal Biochem 554:28–33. https://doi.org/10.1016/j.ab.2018.05.025

    Article  CAS  PubMed  Google Scholar 

  69. Shkunov MN, Vardeny ZV, DeLong MC, Polson RC, Zakhidov AA, Baughman RH (2002) Tunable, gap-state lasing in switcbable directions for opal photonic crystals. Adv Funct Mater 12:21–26. https://doi.org/10.1002/1616-3028(20020101)12:1%3C21::AID-ADFM21%3E3.0.CO;2-S

    Article  CAS  Google Scholar 

  70. Lodahl P, van Driel AF, Nikolaev IS, Irman A, Overgaag K, Vanmaekelbergh D, Vos WL (2004) Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430:654–657. https://doi.org/10.1038/nature02772

    Article  CAS  PubMed  Google Scholar 

  71. Arsenault AC, Clark TJ, von Freymann G, Cademartiri L, Sapienza R, Bertolotti J, Vekris E, Wong S, Kitaev V, Manners I, Wang RZ, John S, Wiersma D, Ozin GA (2006) From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat Mater 5:179–184. https://doi.org/10.1038/nmat1588

    Article  CAS  Google Scholar 

  72. Ye YJ, Ishikawa M (2008) Enhancing fluorescence detection with a photonic crystal structure in a total-internal-reflection configuration. Opt Lett 33:1729–1731. https://doi.org/10.1364/ol.33.001729

    Article  PubMed  Google Scholar 

  73. Bechger L, Lodahl P, Vos Willem L (2005) Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals. J Phys Chem B 109:9980–9988. https://doi.org/10.1021/jp047489t

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Wang J, Ji Z, Wenping Hu, Jiang L, Song Y, Zhu D (2007) Solid-state fluorescence enhancement of organic dyes by photonic crystals. J Mater Chem 17:90–94. https://doi.org/10.1039/B612905F

    Article  Google Scholar 

  75. Zhang W, Nikhil Ganesh C, Patrick M, Cunningham Brian T (2008) Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures. Small 4:2199–2203. https://doi.org/10.1002/smll.200800367

    Article  CAS  PubMed  Google Scholar 

  76. Yong YJ, Mitsuru I, Yuji Y, Noriaki T, Hiroki N (1999) Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals. Appl Phys Lett doi 10(1063/1):125402

    Google Scholar 

  77. Li H, Wang J, Liu F, Song Y, Wang R (2011) Fluorescence enhancement by heterostructure colloidal photonic crystals with dual stopbands. J Colloid Interface Sci 356:63–68. https://doi.org/10.1016/j.jcis.2010.12.078

    Article  CAS  PubMed  Google Scholar 

  78. Li M, He F, Liao Q, Liu J, Liang Xu, Jiang L, Song Y, Wang S, Zhu D (2008) Ultrasensitive DNA detection using photonic crystals. Angew Chem Int Edit 47:7258–7262. https://doi.org/10.1002/anie.200801998

    Article  CAS  Google Scholar 

  79. Ziyi Yu, Chen Li, Chen Su (2010) Uniform fluorescent photonic crystal supraballs generated from nanocrystal-loaded hydrogel microspheres. J Mater Chem 20:6182–6188. https://doi.org/10.1039/c0jm00400f

    Article  CAS  Google Scholar 

  80. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  81. Grant M, Albrecht J (1977) Anomalously intense Raman spectra of pyridine at a silverer electrode. J Am Chem Soc 99:5215–5217. https://doi.org/10.1021/ja00457a071

    Article  Google Scholar 

  82. Jeanmaire DL, Van Duyne RP (1977) Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84:1–20. https://doi.org/10.1016/S0022-0728(77)80224-6

    Article  CAS  Google Scholar 

  83. Grant AM, Alan CJ (2002) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217. https://doi.org/10.1021/ja00457a071

    Article  Google Scholar 

  84. Haynes Christy L, McFarland Adam D, Van Duyne Richard P (2005) Surface-enhanced Raman spectroscopy. Anal chem 77:1717–1718. https://doi.org/10.1021/ac053456d

    Article  Google Scholar 

  85. Lin X, Cui Y, Yanhui Xu, Ren B, Tian Z (2009) Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394:1729–1745. https://doi.org/10.1007/s00216-009-2761-5

    Article  CAS  PubMed  Google Scholar 

  86. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  87. Kreibig U, Genzel L (1985) Optical absorption of small metallic particles. Surf Sci Lett 156:678–700. https://doi.org/10.1016/0039-6028(85)90239-0

    Article  CAS  Google Scholar 

  88. Xia HX, Wei Ji, Bing Z, Yukihiro O (2017) Semiconductor-enhanced Raman scattering: active nanomaterials and applications. Nanoscale 9:4847–4861. https://doi.org/10.1039/C6NR08693D

    Article  CAS  Google Scholar 

  89. Liu Y (2020) Multiple SERS Biological Detection Based on Raman Photonic Crystal Beads. Dissertation, Yangzhou University

  90. Zhu X (2019) Multicomponent detection of mycotoxins based on surface-enhanced Raman spectroscopy photonic crystal microsphere biochip. Dissertation, Nanjing Normal University

  91. Wang S, Shao R, Li W, Li X, Sun J, Jiao S, Dai S, Dou M, Ruimin Xu, Li Q, Li J (2022) Three-dimensional ordered macroporous magnetic inverse photonic crystal microsphere-based molecularly imprinted polymer for selective capture of aflatoxin B-1. ACS Appl Mater Interfaces 14:18845–18853. https://doi.org/10.1021/acsami.2c01014

    Article  CAS  PubMed  Google Scholar 

  92. Sun J, Li W, Zhu X, Jiao S, Chang Y, Wang S, Dai S, Ruimin Xu, Dou M, Li Q, Li J (2021) A novel multiplex mycotoxin surface-enhanced raman spectroscopy immunoassay using functional gold nanotags on a silica photonic crystal microsphere biochip. J Agric Food Chem 69:11494–11501. https://doi.org/10.1021/acs.jafc.1c03469

    Article  CAS  PubMed  Google Scholar 

  93. Gai X (2021) Photonic crystal sensing technology for rapid detection of Biotoxin in food. Dissertation, Inner Mongolia Medial University

  94. Jiao S, Liu J, Sun J, Chang Y, Wang S, Dai S, Ruimin Xu, Dou M, Li Q, Wang J, Li J (2022) A highly sensitive and reproducible multiplex mycotoxin SERS array based on AuNPs-loaded inverse opal silica photonic crystal microsphere. Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2021.131245

    Article  Google Scholar 

  95. Qin T (2020) Photonic Crystals enable label-free and ultra-trace detection of biotoxin in food. Dissertation, Lanzhou University

  96. Chi J, Ma B, Dong X, Gao B, Elbaz A, Liu H, Zhongze Gu (2018) A bio-inspired photonic nitrocellulose array for ultrasensitive assays of single nucleic acids. Analyst 143:4559–4565. https://doi.org/10.1039/c8an00939b

    Article  CAS  PubMed  Google Scholar 

  97. Murtaza G, Aysha SR, Irfan M, Yan D, Rizwan UK, Rafique B, Xue M, Meng Z, Feng Qu (2020) Glycated albumin based photonic crystal sensors for detection of lipopolysaccharides and discrimination of Gram-negative bacteria. Anal Chim Acta 1117:1–8. https://doi.org/10.1016/j.aca.2020.04.018

    Article  CAS  PubMed  Google Scholar 

  98. Wang L, Lin F, Liping Yu (2012) A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst 137:3502–3509. https://doi.org/10.1039/c2an35460h

    Article  CAS  PubMed  Google Scholar 

  99. Han S, Jin Y, Liqiang Su, Chu H, Zhang W (2020) A two-dimensional molecularly imprinted photonic crystal sensor for highly efficient tetracycline detection. Anal Methods 12:1374–1379. https://doi.org/10.1039/D0AY00110D

    Article  CAS  Google Scholar 

  100. Wang Y, Xie T, Yang T, Lei T, Fan J, Meng Z, Xue M, Qiu L, Qi F, Wang Z (2019) Fast screening of antibiotics in milk using a molecularly imprinted two-dimensional photonic crystal hydrogel sensor. Anal Chimi Acta 1070:97–103. https://doi.org/10.1016/j.aca.2019.04.031

    Article  CAS  Google Scholar 

  101. Zhou C, Wang T, Liu J, Guo C, Peng Y, Bai J, Liu M, Dong J, Gao Na, Ning B, Gao Z (2012) Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol. Analyst 137:4469–4474. https://doi.org/10.1039/C2AN35617A

    Article  CAS  PubMed  Google Scholar 

  102. Sai Na, Yuntang Wu, Sun Z, Guanggui Yu, Huang G (2019) A novel photonic sensor for the detection of chloramphenicol. Arab J Chem 12:4398–4406. https://doi.org/10.1016/j.arabjc.2016.06.015

    Article  CAS  Google Scholar 

  103. Zhang Y, Ren H, Liping Yu (2018) Development of molecularly imprinted photonic polymers for sensing of sulfonamides in egg white. Anal Methods 10:101–108. https://doi.org/10.1039/c7ay02283b

    Article  CAS  Google Scholar 

  104. Li L, Lin Z, Huang Z, Peng A (2019) Rapid detection of sulfaguanidine in fish by using a photonic crystal molecularly imprinted polymer. Food Chem 281:57–62. https://doi.org/10.1016/j.foodchem.2018.12.073

    Article  CAS  PubMed  Google Scholar 

  105. Wang Y, Fan J, Meng Z, Xue M, Qiu L (2019) Fabrication of an antibiotic-sensitive 2D-molecularly imprinted photonic crystal. Anal Methods 11:2875–2879. https://doi.org/10.1039/c9ay00674e

    Article  CAS  Google Scholar 

  106. Zhang R, Wang Y, Liping Yu (2014) Specific and ultrasensitive ciprofloxacin detection by responsive photonic crystal sensor. J Hazard Mater 280:46–54. https://doi.org/10.1016/j.jhazmat.2014.07.032

    Article  CAS  PubMed  Google Scholar 

  107. Chen S, Sun H, Huang Z, Jin Z, Fang S, He J, Liu Y, Zhang Yi, Lai J (2019) The visual detection of anesthetics in fish based on an inverse opal photonic crystal sensor. RSC Adv 9:16831–16838. https://doi.org/10.1039/c9ra01600g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang X, Zhongde Mu, Liu R, Yuepu Pu, Yin L (2013) Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food Chem 141:3947–3953. https://doi.org/10.1016/j.foodchem.2013.06.024

    Article  CAS  PubMed  Google Scholar 

  109. Ting D, Cheng J, Min W, Wang X, Zhou H, Cheng M (2014) An in situ immobilized pipette tip solid phase microextraction method based on molecularly imprinted polymer monolith for the selective determination of difenoconazole in tap water and grape juice. J Chromatogr B 951–952:104–109. https://doi.org/10.1016/j.jchromb.2014.01.030

    Article  CAS  Google Scholar 

  110. Xuan W (2015) Fabrication and application for multiplex detection technique of pesticides residues based on photonic crystal beads. Dissertation, Southeast University

  111. Rossi E, Salahshoor Z, Ho K-V, Lin C-H, Errea MI, Fidalgo MM (2021) Microchimica acta volume detection of chlorantraniliprole residues in tomato using field-deployable MIP photonic sensors. Microchim Acta. https://doi.org/10.1007/s00604-021-04731-2

    Article  Google Scholar 

  112. Zhen Wu, Tao C-a, Lin C, Shen D, Li G (2008) Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers. Chem Eur J 14:11358–11368. https://doi.org/10.1002/chem.200801250

    Article  CAS  Google Scholar 

  113. Chao Huang Yu, Cheng ZG, Zhang H, Wei J (2018) Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring. Sens Actuators B Chem 273:1705–1712. https://doi.org/10.1016/j.snb.2018.07.050

    Article  CAS  Google Scholar 

  114. Tong Z (2020) Preparation and properties of simetryn molecular imprinted photonic crystal hydrogel films. Dissertation, Kunming University of Science and Technology

  115. Zhang C, Jiying Xu, Chen Yi (2020) Preparation of monolayer photonic crystals from Ag nanobulge-deposited SiO(2)particles as substrates for reproducible SERS assay of trace thiol pesticide. Nanomaterials. https://doi.org/10.3390/nano10061205

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hang G, Pan Y, Huang Z, Zhu D, Huang Y, Zen Q, Sun H (2017) Determination of preservatives in food using a molecularly imprinted photonic crystal gel sensor. J Instrum Anal 36:1023–1028. https://doi.org/10.3969/j.issn.1004-4957.2017.08.013

    Article  Google Scholar 

  117. Yanshuang J, Liqiang S, Shuang H, Guoqiang J, Tingting Y (2020) Determination of colorant curcumin in food using molecularly imprinted photonic crystal gel sensor. Chin J Anal Lab 39:684–688

    Google Scholar 

  118. Shenqi W (2013) Preparation and application of Vanillin/Bispheno lA imprinted polymer and thermal and magnetic dual responsive mesoporous silica for sophoridine. Dissertation, Nanchang University

  119. Zhang X, Ma Y, Cui Y, Mao J, Yap Y (2022) Molecularly imprinted photonic crystal-based sensor for rapid detection of dibutyl phthalate in alcoholic beverages. Food Sci 43:346–352. https://doi.org/10.7506/spkx1002-6630-20211111-130

    Article  Google Scholar 

  120. Shen Z, Yang Z, Xianming K (2020) Plasmonic nanoparticles-decorated diatomite biosilica chip applied to SERS detection of PAHs from cooking oil. Spectrosc Spectr Anal 40:147–148

    CAS  Google Scholar 

  121. Shen Z, Wang H, Qian Yu, Li Q, Xiaomin L, Kong X (2021) On-site separation and identification of polycyclic aromatic hydrocarbons from edible oil by TLC-SERS on diatomite photonic biosilica plate. Microchem J. https://doi.org/10.1016/j.microc.2020.105672

    Article  Google Scholar 

  122. Palihati, Abudouresuli, Abuduwaili (2014) Applied research of molarity detection technology in photonic crystals. Laser J 35:28–29

    Google Scholar 

  123. Robinson S, Dhanlaksmi N (2017) Photonic crystal based biosensor for the detection of glucose concentration in urine. Photonic Sens 7:11–19. https://doi.org/10.1007/s13320-016-0347-3

    Article  CAS  Google Scholar 

  124. Chen C, Dong Z, Shen J, Chen H, Zhu Y, Zhu Z (2018) 2D photonic crystal hydrogel sensor for tear glucose monitoring. ACS Omega 3:3211–3217. https://doi.org/10.1021/acsomega.7b02046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ayyanar N, Peramandai GK, Raja GT, Vigneswaran D, Hussein AA (2019) Tricore photonic crystal fibre based refractive index sensor for glucose detection. IET Optoelectron. https://doi.org/10.1049/iet-opt.2018.5079

    Article  Google Scholar 

  126. Uttara B, Kumar RJ, Kumar BG (2020) Design of photonic crystal microring resonator based all-optical refractive-index sensor for analyzing different milk constituents. Opt Quantum Electron. https://doi.org/10.1007/s11082-019-2140-1

    Article  Google Scholar 

  127. Abohassan KM, Ashour HS, Abadla MM (2021) A 1D binary photonic crystal sensor for detecting fat concentrations in commercial milk. RSC Adv 11:12058–12065. https://doi.org/10.1039/d1ra00955a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zaky ZA, Arvind S, Sagr A, Nahla S, Aly AH (2022) Detection of fat concentration in milk using ternary photonic crystal. SILICON 14:6063–6073. https://doi.org/10.1007/s12633-021-01379-8

    Article  CAS  Google Scholar 

  129. Zhang Y, Zhao P, Liping Y (2013) Highly-sensitive and selective colorimetric sensor for amino acids chiral recognition based on molecularly imprinted photonic polymers. Sens Actuators B Chem 181:850–857. https://doi.org/10.1016/j.snb.2013.02.079

    Article  CAS  Google Scholar 

  130. Zhang Y, Pan Z, Yuan Y, Sun Z, Ma J, Huang G, Xing F, Gao J (2013) Molecularly imprinted photonic crystals for the direct label-free distinguishing of L-proline and D-proline. Phys Chem Chem Phys 15:17250–17256. https://doi.org/10.1039/c3cp52213j

    Article  CAS  PubMed  Google Scholar 

  131. Chen Q, Wenhui SS, Cheng M, Liao S, Zhou J, Zhaoyang Wu (2018) Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine. Microchim Acta 185:9. https://doi.org/10.1007/s00604-018-3080-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Education of Jiangsu Province, China (20KJD310002).

Funding

This work was supported by the Department of Education of Jiangsu Province, China (20KJD310002).

Author information

Authors and Affiliations

Authors

Contributions

XL is the legal person in charge of this article. She provided the concept and structure of this article, made revisions to the manuscript, undertook the funding in the article and ensured the quality of the article. XS performed the literature search and data analysis and wrote the first draft of the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianlin Li.

Ethics declarations

Conflict of interest

All authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All authors declare that this work does not require any ethical clearance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shi, X., Zhang, X. et al. A review on photonic crystal materials in food detection. Eur Food Res Technol 249, 3105–3122 (2023). https://doi.org/10.1007/s00217-023-04353-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04353-3

Keywords

Navigation