Skip to main content
Log in

Comparison of bioactive constituents by HPLC–DAD–ESI-MS and UFLC and in vitro antioxidant activities of blossom honey, bee pollen, and propolis

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the total phenolic content, phenolic profile, and antioxidant activity of honey, bee pollen, and propolis samples from Turkey's Black Sea Region. The total phenolic content of these bee products was found using Folin–Ciocalteu's method, and their antioxidant capacity was found using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and cupric ion reducing antioxidant capacity (CUPRAC) assays. Phenolic compounds of honey samples were characterized by high-performance liquid chromatography coupled to a photodiode array detector and mass spectrometer (HPLC–DAD–ESI-MS), while phenolic compounds of bee pollen and propolis samples were quantified ultra-fast liquid chromatography (UFLC). The total phenolic values for honey, bee pollen and propolis were 6.32–18.21 mg GAE/100 g, 547.64–769.4 mg GAE/100 gr, and 6096.1–11,564 mg GAE/100 gr, respectively. DPPH and CUPRAC values of honey, pollen and propolis were 11.05–21.38% and 0.38–1.48 µmol Trolox/g; 24.67–38.63% and 0.03–0.05 mmol Trolox/g; 11.81–34.12% and 0.47–0.89 mmol Trolox/g, respectively. About 30 different phenolic compounds were identified as quantitative. Our findings have shown that all bee products examined in the study are found to contain gallic acid, naringenin, and caffeic acid. In terms of total phenolic content and antioxidant activity, the bee product extracts were ranked as follows: propolis > bee pollen > honey. The high concentration of phenolic compounds in propolis explains its remarkable antioxidant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Kasprzyk I, Depciuch J, Grabek-Lejko D, Parlinska-Wojtan M (2018) FTIR-ATR spectroscopy of pollen and honey as a tool for unifloral honey authentication. The case study of rape honey. Food Control 84:33–40. https://doi.org/10.1016/j.foodcont.2017.07.015

    Article  CAS  Google Scholar 

  2. Khan SU, Anjum SI, Rahman K, Ansari MJ, Khan WU, Kamal S, Khattak B, Muhammed A, Khan HU (2018) Honey: Single food stuff comprises many drugs. Saudi J Biol Sci 25:320–325. https://doi.org/10.1016/j.sjbs.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  3. Meo SA, Al-Asiri SA, Mahesar AL, Ansari MJ (2017) Role of honey in modern medicine. Saudi J Biol Sci 24:975–978. https://doi.org/10.1016/j.sjbs.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  4. Pasias IN, Kiriakou IK, Kaitatzis A, Koutelidakis AE, Proestos C (2018) Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chem 242:513–518. https://doi.org/10.1016/j.foodchem.2017.09.083

    Article  CAS  PubMed  Google Scholar 

  5. Badolato M, Carullo G, Cione E et al (2017) From the hive: Honey, a novel weapon against cancer. Eur J Med Chem 142:290–299. https://doi.org/10.1016/j.ejmech.2017.07.064

    Article  CAS  PubMed  Google Scholar 

  6. Bueno-Costa FM, Zambiazi RC, Bohmer BW, Clasen Chaves F, da Silva WP, Zanusso JT, Dutra I (2016) Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT Food Sci Technol 65:333–340. https://doi.org/10.1016/j.lwt.2015.08.018

    Article  CAS  Google Scholar 

  7. Ramos OY, Salomón V, Libonatti C, Cepeda R, Maldonado L, Basualdo MOY, Salomón V, Libonatti C (2018) Effect of botanical and physicochemical composition of Argentinean honeys on the inhibitory action against food pathogens. LWT Food Sci Technol 87:457–463. https://doi.org/10.1016/j.lwt.2017.09.014

    Article  CAS  Google Scholar 

  8. Demir E, Bayram NE (2018) Specifying some quality characteristics of monofloral and multifloral honey samples. Hacettepe J Biol Chem 3:417–423. https://doi.org/10.15671/hjbc.2018.249

    Article  Google Scholar 

  9. Feás X, Vázquez-Tato MP, Estevinho L, Seijas JA, Iglesias AX, Vazquez-Tato MP, Estevinho L (2012) Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules 17:8359–8377. https://doi.org/10.3390/molecules17078359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Melo AAM, Almeida-Muradian LB (2017) Chemical composition of bee pollen. In: José A-S (ed) Bee products—chemical and biological properties. Springer, pp 1–306

    Google Scholar 

  11. Campos MG, Markham KR, Cunha A (1997) Bee-pollen: composition, properties, and applications. In: Mizrahi A, Lensky Y (eds) Bee products: properties, applications, and apitherapy. Springer US, Boston, pp 93–100

  12. Kostić AT, Barać MB, Stanojević SP, Milojković-Opsenica DM, Tešić ŽL, Šikoparija B, Radišić P, Prentović M, Pešić MB (2015) Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT - Food Sci Technol 62:301–309. https://doi.org/10.1016/j.lwt.2015.01.031

    Article  CAS  Google Scholar 

  13. Ares AM, Valverde S, Bernal JL, Nozal MJ, Bernal J (2018) Extraction and determination of bioactive compounds from bee pollen. J Pharm Biomed Anal 147:110–124. https://doi.org/10.1016/j.jpba.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  14. Coelho J, Falcão SI, Vale N (2017) Composición fenólica y evaluación de la actividad antioxidante de los propóleos del sureste y sur de Brasil. J Apic Res 56:21–31. https://doi.org/10.1080/00218839.2016.1277602

    Article  Google Scholar 

  15. Ristivojević P, Dimkić I, Guzelmeric E, Trifković J, Knežević M, Berić T, Yesilada E, Milojković-Opsenica D, Stanković S (2018) Profiling of Turkish propolis subtypes: comparative evaluation of their phytochemical compositions, antioxidant and antimicrobial activities. LWT Food Sci Technol 95:367–379. https://doi.org/10.1016/j.lwt.2018.04.063

    Article  Google Scholar 

  16. Escriche I, Juan-Borrás M (2018) Standardizing the analysis of phenolic profile in propolis. Food Res Int 106:834–841. https://doi.org/10.1016/j.foodres.2018.01.055

    Article  CAS  PubMed  Google Scholar 

  17. Bayram S, Bayram NE, Gerçek YC, Sorkun K (2016) Anticytotoxic and antimutagenic effects of propolis on human lymphocytes in vitro. Mellifera 16:38–46

    Google Scholar 

  18. Afata TN, Nemo R, Ishete N, Tucho GT, Dekebo A (2022) Phytochemical investigation, physicochemical characterization, and antimicrobial activities of Ethiopian propolis. Arab J Chem 15:103931. https://doi.org/10.1016/j.arabjc.2022.103931

    Article  CAS  Google Scholar 

  19. Peixoto M, Freitas AS, Cunha A, Oliveira R, Almeida-Aguiar C (2021) Antioxidant and antimicrobial activity of blends of propolis samples collected in different years. LWT Food Sci Technol 145:111311. https://doi.org/10.1016/j.lwt.2021.111311

    Article  CAS  Google Scholar 

  20. Batista CM, Alves AVF, Queiroz LA, Lima BS, Araújo AAS, de Albuquerque Júnior RLC, Cardoso JC (2018) The photoprotective and anti-inflammatory activity of red propolis extract in rats. J Photochem Photobiol B Biol 180:198–207. https://doi.org/10.1016/j.jphotobiol.2018.01.028

    Article  CAS  Google Scholar 

  21. Rufatto LC, dos Santos DA, Marinho F, Henriques JAP, Ely MR, Moura S (2017) Red propolis: chemical composition and pharmacological activity. Asian Pac J Trop Biomed 7:591–598. https://doi.org/10.1016/j.apjtb.2017.06.009

    Article  Google Scholar 

  22. Bayram NE, Karadayı M, Güllüce M, Bayram S, Sorkun K, Öz GC, Salih B (2015) Genotoxic and antigenotoxic evaluation of propolis by using in vitro bacterial assay systems. Mellifera 15:29–36

    Google Scholar 

  23. Gómez-Caravaca AM, Gómez-Romero M, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A (2006) Advances in the analysis of phenolic compounds in products derived from bees. J Pharm Biomed Anal 41:1220–1234. https://doi.org/10.1016/j.jpba.2006.03.002

    Article  CAS  PubMed  Google Scholar 

  24. Bankova V (2005) Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol 100:114–117. https://doi.org/10.1016/j.jep.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  25. Chen YW, Ye SR, Ting C, Yu YH (2018) Antibacterial activity of propolins from Taiwanese green propolis. J Food Drug Anal 26:761–768. https://doi.org/10.1016/j.jfda.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  26. Bayram NE, Sorkun K, Öz GC, Salih B, Topçu G (2018) Chemical characterization of 64 propolis samples from Hakkari, Turkey. Rec Nat Prod 12:569–581. https://doi.org/10.25135/rnp.78.16.12.585

    Article  CAS  Google Scholar 

  27. Gašić U, Kečkeš S, Dabić D, Trifković J, Milojković-Opsenica D, Natić M, Tešić Ž (2014) Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem 145:599–607. https://doi.org/10.1016/j.foodchem.2013.08.088

    Article  CAS  PubMed  Google Scholar 

  28. Wahdan HAL (1998) Causes of the antimicrobial activity of honey. Infection 26:26–31. https://doi.org/10.1007/BF02768748

    Article  CAS  PubMed  Google Scholar 

  29. de Almeida JF, dos Reis AS, Heldt LFS, Pereira D, Bianchin M, de Moura C, Carpes ST (2017) Lyophilized bee pollen extract: a natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT Food Sci Technol 76:299–305. https://doi.org/10.1016/j.lwt.2016.06.017

    Article  CAS  Google Scholar 

  30. Andrade JKS, Denadai M, de Oliveira CS, Nunes ML, Narain N (2017) Evaluation of bioactive compounds potential and antioxidant activity of brown, green and red propolis from Brazilian northeast region. Food Res Int 101:129–138. https://doi.org/10.1016/j.foodres.2017.08.066

    Article  CAS  PubMed  Google Scholar 

  31. Şensu E, Kasapoğlu KN, Gültekin-Özgüven M, Demircan E, Arslaner A, Özçelik B (2021) Orange, red and purple barberries: effect of in-vitro digestion on antioxidants and ACE inhibitors. Lwt. https://doi.org/10.1016/j.lwt.2020.110820

    Article  Google Scholar 

  32. Singh RP, Chidambara Murthy KN, Jayaprakasha GK (2002) Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem 50:81–86. https://doi.org/10.1021/jf010865b

    Article  CAS  PubMed  Google Scholar 

  33. Kumaran A, Joel Karunakaran R (2006) Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem 97:109–114. https://doi.org/10.1016/j.foodchem.2005.03.032

    Article  CAS  Google Scholar 

  34. Rai S, Wahile A, Mukherjee K, Saha BP, Mukherjee PK (2006) Antioxidant activity of Nelumbo nucifera (sacred lotus) seeds. J Ethnopharmacol 104:322–327. https://doi.org/10.1016/j.jep.2005.09.025

    Article  PubMed  Google Scholar 

  35. Chua LS, Rahaman NLA, Adnan NA, Eddie Tan TT (2013) Antioxidant activity of three honey samples in relation with their biochemical components. J Anal Methods Chem. https://doi.org/10.1155/2013/313798

    Article  PubMed  PubMed Central  Google Scholar 

  36. Apak R, Güçlü K, Özyürek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:7970–7981. https://doi.org/10.1021/jf048741x

    Article  CAS  PubMed  Google Scholar 

  37. Biluca FC, da Silva B, Caon T, Mohr ETB, Vieira GN, Gonzaga LV, Costa ACO (2020) Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Res Int 129:108756. https://doi.org/10.1016/j.foodres.2019.108756

    Article  CAS  PubMed  Google Scholar 

  38. Moniruzzaman M, Amrah Sulaiman S, Gan SH (2017) Phenolic acid and flavonoid composition of malaysian honeys. J Food Biochem 41:1–8. https://doi.org/10.1111/jfbc.12282

    Article  CAS  Google Scholar 

  39. Güneş ME, Şahin S, Demir C, Borum E, Tosunoğlu A (2017) Determination of phenolic compounds profile in chestnut and floral honeys and their antioxidant and antimicrobial activities. J Food Biochem 41:1–12. https://doi.org/10.1111/jfbc.12345

    Article  CAS  Google Scholar 

  40. Kečkeš S, Gašić U, Veličković TĆ, Milojković-Opsenica D, Natić M, Tešić Ž (2013) The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chem 138:32–40. https://doi.org/10.1016/j.foodchem.2012.10.025

    Article  CAS  PubMed  Google Scholar 

  41. Can Z, Yildiz O, Sahin H, Turumtay EA, Silici S, Kolayli S (2015) An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem 180:133–141. https://doi.org/10.1016/j.foodchem.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  42. Jasicka-Misiak I, Poliwoda A, Dereń M, Kafarski P (2012) Phenolic compounds and abscisic acid as potential markers for the floral origin of two Polish unifloral honeys. Food Chem 131:1149–1156. https://doi.org/10.1016/j.foodchem.2011.09.083

    Article  CAS  Google Scholar 

  43. Spilioti E, Jaakkola M, Tolonen T, Lipponen M, Virtanen V, Chinou I, Moutsatsou, (2014) Phenolic acid composition, antiatherogenic and anticancer potential of honeys derived from various regions in Greece. PLoS ONE 9:1–10. https://doi.org/10.1371/journal.pone.0094860

    Article  CAS  Google Scholar 

  44. Kıvrak Ş, Kıvrak İ (2017) Assessment of phenolic profile of Turkish honeys. Int J Food Prop 20:864–876. https://doi.org/10.1080/10942912.2016.1188307

    Article  CAS  Google Scholar 

  45. da Silva IAA, da Silva TMS, Camara CA, Queiroz N, Magnani M, de Novais JS, de Souza AG (2013) Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chem 141:3552–3558. https://doi.org/10.1016/j.foodchem.2013.06.072

    Article  CAS  PubMed  Google Scholar 

  46. Cheng N, Ren N, Gao H, Lei X, Zheng J, Cao W (2013) Antioxidant and hepatoprotective effects of Schisandra chinensis pollen extract on CCl4-induced acute liver damage in mice. Food Chem Toxicol 55:234–240. https://doi.org/10.1016/j.fct.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  47. Serra Bonvehi J, Soliva Torrentó M, Centelles Lorente E (2001) Evaluation of polyphenolic and flavonoid compounds in honeybee-collected pollen produced in Spain. J Agric Food Chem 49:1848–1853. https://doi.org/10.1021/jf0012300

    Article  CAS  PubMed  Google Scholar 

  48. Aličić D, Šubarić D, Jašić M, Pašalić H, Ačkar Đ (2014) Antioxidant properties of pollen. Hrana u Zdr i Boles Znan časopis za Nutr i dijetetiku 3:6–12

    Google Scholar 

  49. Huang S, Zhang CP, Wang K, Li GQ, Hu FL (2014) Recent advances in the chemical composition of propolis. Molecules 19:19610–19632. https://doi.org/10.3390/molecules191219610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Omene C, Kalac M, Wu J, Marchi E, Frenkel K, O’Connor OA (2013) Propolis and its active component, Caffeic acid phenethyl ester (CAPE), modulate breast cancer therapeutic targets via an epigenetically mediated mechanism of action. J Cancer Sci Ther 5:334–342. https://doi.org/10.4172/1948-5956.1000224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu Y, Luo L, Chen B, Fu Y (2009) Recent development of chemical components in propolis. Front Biol China 4:385–391. https://doi.org/10.1007/s11515-009-0053-2

    Article  Google Scholar 

  52. Can Z, Yıldız O, Şahin H, Asadov A, Kolayli S (2015) Phenolic profile and antioxidant potential of propolis from Azerbaijan. Mellifera 15:16–28

    Google Scholar 

  53. Falcão SI, Vale N, Gomes P, Domingues MR, Freire C, Cardoso SM, Vilas-Boas M (2013) Phenolic profiling of Portuguese propolis by LC-MS spectrometry: Uncommon propolis rich in flavonoid glycosides. Phytochem Anal 24:309–318. https://doi.org/10.1002/pca.2412

    Article  CAS  PubMed  Google Scholar 

  54. Gül A, Pehlivan T (2018) Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J Biol Sci 25:1056–1065. https://doi.org/10.1016/j.sjbs.2018.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. do Nascimento KS, Sattler JAG, Macedo LFL, González CVS, de Melo ILP, da Silva Araújo E, do Almeida-Muradian LBKS, Gasparotto Sattler JA, Lauer Macedo LF (2018) Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT Food Sci Technol 91:85–94. https://doi.org/10.1016/j.lwt.2018.01.016

    Article  CAS  Google Scholar 

  56. Perna A, Intaglietta I, Simonetti A, Gambacorta E (2013) A comparative study on phenolic profile, vitamin C content and antioxidant activity of Italian honeys of different botanical origin. Int J Food Sci Technol 48:1899–1908. https://doi.org/10.1111/ijfs.12169

    Article  CAS  Google Scholar 

  57. Socha R, Juszczak L, Pietrzyk S, Gałkowska D, Fortuna T, Witczak T (2011) Phenolic profile and antioxidant properties of Polish honeys. Int J Food Sci Technol 46:528–534. https://doi.org/10.1111/j.1365-2621.2010.02517.x

    Article  CAS  Google Scholar 

  58. Boussaid A, Chouaibi M, Rezig L, Hellal R, Donsì F, Ferrari G, Hamdi S (2018) Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab J Chem 11:265–274. https://doi.org/10.1016/j.arabjc.2014.08.011

    Article  CAS  Google Scholar 

  59. Ecem Bayram N, Yüzer MO, Bayram S (2019) Melissopalynology analysis, physicochemical properties, multi-element content and antimicrobial activity of honey samples collected from Bayburt, Turkey. Uludag Bee J 19(2):161–176

    Google Scholar 

  60. Ecem Bayram N, Kara HH, Muslu Can A, Bozkurt F, Akman PK, Vardar SU, Dertli E (2020) Characterization of physicochemical and antioxidant properties of Bayburt honey from north-east part of Turkey. J Apic Res 60(1):46–56

    Article  Google Scholar 

  61. Mouhoubi-Tafinine Z, Ouchemoukh S, Tamendjari A (2016) Antioxydant activity of some algerian honey and propolis. Ind Crops Prod 88:85–90. https://doi.org/10.1016/j.indcrop.2016.02.033

    Article  CAS  Google Scholar 

  62. Laskar RA, Sk I, Roy N, Begum NA (2010) Antioxidant activity of Indian propolis and its chemical constituents. Food Chem 122:233–237. https://doi.org/10.1016/j.foodchem.2010.02.068

    Article  CAS  Google Scholar 

  63. Sarikaya AO, Ulusoy E, ÖztÜrk N, Tuncel M, Kolayli S (2009) Antioxidant activity and phenolic acid constituents of chestnut (Castania sativa Mill.) honey and propolis. J Food Biochem 33:470–481. https://doi.org/10.1111/j.1745-4514.2009.00231.x

    Article  CAS  Google Scholar 

  64. Dumbrava DG, Bordean DM, Raba DN, Druga M, Moldovan C, Popa MV (2013) Antioxidant properties and other physicochemical characteristics of some honey varieties from west Romanian area. In: International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology & mining Ecology Management, p 101

  65. Jerković I, Marijanović Z, Zekić M, Tuberoso CIG (2017) First report on rare unifloral honey of endemic Moltkia petraea (Tratt.) Griseb. from Croatia: detailed chemical screening and antioxidant capacity. Chem Biodivers. https://doi.org/10.1002/cbdv.201600268

    Article  PubMed  Google Scholar 

  66. Kalaycıoğlu Z, Kaygusuz H, Döker S, Kolaylı S, Erim FB (2017) Characterization of Turkish honeybee pollens by principal component analysis based on their individual organic acids, sugars, minerals, and antioxidant activities. LWT Food Sci Technol 84:402–408. https://doi.org/10.1016/j.lwt.2017.06.003

    Article  CAS  Google Scholar 

  67. Ulusoy E, Kolayli S (2014) Phenolic composition and antioxidant properties of anzer bee pollen. J Food Biochem 38:73–82. https://doi.org/10.1111/jfbc.12027

    Article  CAS  Google Scholar 

  68. Nina N, Quispe C, Jiménez-Aspee F, Theoduloz C, Giménez A, Schmeda-Hirschmann G (2016) Chemical profiling and antioxidant activity of Bolivian propolis. J Sci Food Agric 96:2142–2153. https://doi.org/10.1002/jsfa.7330

    Article  CAS  PubMed  Google Scholar 

  69. Martin-Benlloch X, Novodomska A, Jacquemin D, Davioud-Charvet E, Elhabiri M (2018) Iron(iii) coordination properties of ladanein, a flavone lead with a broad-spectrum antiviral activity. New J Chem 42:8074–8087. https://doi.org/10.1039/c7nj04867j

    Article  CAS  Google Scholar 

  70. Martin-Benlloch X, Haid S, Novodomska A, Rominger F, Pietschmann T, Davioud-Charvet E, Elhabiri M (2019) physicochemical properties govern the activity of potent antiviral flavones. ACS Omega 4:4871–4887. https://doi.org/10.1021/acsomega.8b03332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research fund of the Istanbul Technical University, under Project No. 41275.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrin Ecem Bayram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

The authors declare that the study does not contain any studies involving animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saroğlu, Ö., Ecem Bayram, N. & Özçelik, B. Comparison of bioactive constituents by HPLC–DAD–ESI-MS and UFLC and in vitro antioxidant activities of blossom honey, bee pollen, and propolis. Eur Food Res Technol 249, 3085–3096 (2023). https://doi.org/10.1007/s00217-023-04350-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04350-6

Keywords

Navigation