Skip to main content
Log in

Investigating the effect of harvest season on the bioaccessibility of bee pollen polyphenols by ultra-high performance liquid chromatography tandem mass spectrometry

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Pollen, a natural component of flowers that regulates the reproduction of plants, is in granular form and collected by bees as source of food. A wide range of nutrients including carbohydrates, amino acids, vitamins and polyphenols constitute bee pollen, the latter being responsible for its various biological activities. The aim of the current study was to investigate the effect of harvest season on the bioaccessibility of bee pollen polyphenols. For this purpose, bee pollen samples were collected for 4 consecutive weeks from Domanic, Kutahya, Türkiye. The collected samples were subjected to the standardized INFOGEST in vitro digestion model. The changes in the total phenolics, flavonoids and antioxidant capacity during digestion were measured using spectrophotometric methods, whereas the alterations in individual polyphenols were identified and quantified using ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-ESI–MS/MS). Results of spectrophotometric methods showed that the bioaccessible total phenolics, flavonoids and antioxidants were higher in samples collected at the first week compared to samples collected at the following weeks (18–25%, 38–47% and 52–57%, respectively) (P < 0.05). UPLC-ESI–MS/MS analysis of bee pollen samples led to the identification of 30 major compounds including 17 flavonoids and 13 phenolic acids and other bioactive compounds. In total, the concentration of bioaccessible flavonoids was the highest in samples collected at the first week, whereas samples collected on the third week contained significantly more bioaccessible phenolic acids and other bioactive compounds (P < 0.05). Overall, the current study highlighted that harvest season affects the content and bioaccessibility of bee pollen polyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Algethami JS, El-Wahed AAA, Elashal MH et al (2022) Bee Pollen: clinical trials and patent applications. Nutrients 14:2858. https://doi.org/10.3390/nu14142858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Münstedt K, Männle H (2020) Bee products and their role in cancer prevention and treatment. Complement Ther Med 51:102390. https://doi.org/10.1016/j.ctim.2020.102390

    Article  PubMed  Google Scholar 

  3. Olas B (2022) Bee products as interesting natural agents for the prevention and treatment of common cardiovascular diseases. Nutrients 14:2267. https://doi.org/10.3390/nu14112267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thakur M, Nanda V (2020) Composition and functionality of bee pollen: a review. Trends Food Sci Technol 98:82–106. https://doi.org/10.1016/j.tifs.2020.02.001

    Article  CAS  Google Scholar 

  5. Durazzo A, Lucarini M, Plutino M et al (2021) Bee products: a representation of biodiversity, sustainability, and health. Life 11:970. https://doi.org/10.3390/life11090970

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ali AM, Kunugi H (2020) Apitherapy for age-related skeletal muscle dysfunction (Sarcopenia): a review on the effects of royal jelly, propolis, and bee Pollen. Foods 9:1362. https://doi.org/10.3390/foods9101362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giampieri F, Quiles JL, Cianciosi D et al (2022) Bee Products: an emblematic example of underutilized sources of bioactive compounds. J Agric Food Chem 70:6833–6848. https://doi.org/10.1021/acs.jafc.1c05822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mayda N, Özkök A, Ecem Bayram N et al (2020) Bee bread and bee pollen of different plant sources: determination of phenolic content, antioxidant activity, fatty acid and element profiles. J Food Meas Charact 14:1795–1809. https://doi.org/10.1007/s11694-020-00427-y

    Article  Google Scholar 

  9. Mazurek S, Szostak R, Kondratowicz M et al (2021) Modeling of antioxidant activity, polyphenols and macronutrients content of bee pollen applying solid-state 13C NMR spectra. Antioxidants 10:1123. https://doi.org/10.3390/antiox10071123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Prđun S, Svečnjak L, Valentić M et al (2021) Characterization of bee pollen: physico-chemical properties, headspace composition and FTIR spectral profiles. Foods 10:2103. https://doi.org/10.3390/foods10092103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khalifa SAM, Elashal MH, Yosri N et al (2021) Bee Pollen: current status and therapeutic potential. Nutrients 13:1876. https://doi.org/10.3390/nu13061876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Çobanoğlu DN, Kizilpinar Temizer İ, Candan ED et al (2023) Evaluation of the nutritional value of bee pollen by palynological, antioxidant, antimicrobial, and elemental characteristics. Eur Food Res Technol 249:307–325. https://doi.org/10.1007/s00217-022-04117-5

    Article  CAS  Google Scholar 

  13. Aylanc V, Larbi S, Calhelha R et al (2023) Evaluation of antioxidant and anticancer activity of mono- and polyfloral moroccan bee pollen by characterizing phenolic and volatile compounds. Molecules 28:835. https://doi.org/10.3390/molecules28020835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Arfaoui L (2021) Dietary plant polyphenols: effects of food processing on their content and bioavailability. Molecules 26:2959. https://doi.org/10.3390/molecules26102959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wojtunik-Kulesza K, Oniszczuk A, Oniszczuk T et al (2020) Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—a non-systematic review. Nutrients 12:1401. https://doi.org/10.3390/nu12051401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Minekus M, Alminger M, Alvito P et al (2014) A standardised static in vitro digestion method suitable for food – An International Consensus. Food Funct. https://doi.org/10.1039/C3FO60702J

    Article  PubMed  Google Scholar 

  17. Brodkorb A, Egger L, Alminger M et al (2019) INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc. https://doi.org/10.1038/s41596-018-0119-1

    Article  PubMed  Google Scholar 

  18. Yesiltas B, Capanoglu E, Firatligil-Durmus E et al (2014) Investigating the in-vitro bioaccessibility of propolis and pollen using a simulated gastrointestinal digestion system. J Apic Res 53:101–108. https://doi.org/10.3896/IBRA.1.53.1.10

    Article  Google Scholar 

  19. Ozkan K, Sagcan N, Ozulku G et al (2018) Bioactive and bioaccessibility characteristics of honeybee pollens collected from different regions of Turkey. J Food Measure Charact 12:581–587. https://doi.org/10.1007/s11694-017-9670-7

    Article  Google Scholar 

  20. Dulger Altiner D, Sandikci Altunatmaz S, Sabuncu M et al (2021) In-vitro bioaccessibility of antioxidant properties of bee pollen in Turkey. Food Sci Technol 41:133–141. https://doi.org/10.1590/fst.10220

    Article  Google Scholar 

  21. Aylanc V, Tomás A, Russo-Almeida P et al (2021) Assessment of bioactive compounds under simulated gastrointestinal digestion of bee pollen and bee bread: bioaccessibility and antioxidant activity. Antioxidants 10:651. https://doi.org/10.3390/antiox10050651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tatli A, Tel AZ (1999) An overview of the vegetation of Kutahya and its surroundings. J Sci Technol Dumlupınar Univ 1:332–336

    Google Scholar 

  23. Steffan-Dewenter I, Kuhn A (2003) Honeybee foraging in differentially structured landscapes. Proc R Soc Lond B Biol Sci 270:569–575. https://doi.org/10.1098/rspb.2002.2292

    Article  Google Scholar 

  24. Daskin R (2008) Uludag flora. Master thesis, Bursa Uludag University

  25. Ismayilova G, Celenk S (2018) Airborne pollen spectrum of domaniç (Turkey). Ann West Univ Timiş Ser Biol 21:47–56

    Google Scholar 

  26. Kaškonienė V, Ruočkuvienė G, Kaškonas P et al (2015) Chemometric analysis of bee pollen based on volatile and phenolic compound compositions and antioxidant properties. Food Anal Methods 8:1150–1163. https://doi.org/10.1007/s12161-014-9996-2

    Article  Google Scholar 

  27. Hızır-Kadı İ, Gültekin-Özgüven M, Altin G et al (2020) Liposomal nanodelivery systems generated from proliposomes for pollen extract with improved solubility and in vitro bioaccessibility. Heliyon 6:e05030. https://doi.org/10.1016/j.heliyon.2020.e05030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Velioglu YS, Mazza G, Gao L, Oomah BD (1998) antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117. https://doi.org/10.1021/jf9801973

    Article  CAS  Google Scholar 

  29. Kim D-O, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326. https://doi.org/10.1016/S0308-8146(02)00423-5

    Article  CAS  Google Scholar 

  30. Apak R, Güçlü K, Özyürek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. https://doi.org/10.1021/jf048741x

    Article  PubMed  Google Scholar 

  31. Kumaran A, Karunakaran RJ (2006) Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem 97:109–114. https://doi.org/10.1016/J.FOODCHEM.2005.03.032

    Article  CAS  Google Scholar 

  32. Yolci Omeroglu P, Acoglu B, Özdal T et al (2019) Extraction techniques for plant-based bio-active compounds. In: Swamy MK, Akhtar MS (eds) Natural bio-active compounds. Springer Singapore, Singapore, pp 465–492

    Chapter  Google Scholar 

  33. Rocchetti G, Castiglioni S, Maldarizzi G et al (2019) UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. Int J Food Sci Technol 54:335–346. https://doi.org/10.1111/ijfs.13941

    Article  CAS  Google Scholar 

  34. Capanoglu E, Kamiloglu S, Cekic SD et al (2022) Antioxidant activity and capacity measurement. In: Ekiert HM, Ramawa KG, Arora J (eds) Plant antioxidants and health. Springer International Publishing, Cham, pp 709–773

    Chapter  Google Scholar 

  35. Kamiloglu S, Tomas M, Ozdal T et al (2021) Bioactive component analysis. In: Galanakis CM (ed) Innovative food analysis. Elsevier, Netherlands, pp 41–65

    Chapter  Google Scholar 

  36. Ayala-Fuentes JC, Chavez-Santoscoy RA (2021) Nanotechnology as a key to enhance the benefits and improve the bioavailability of flavonoids in the food industry. Foods 10:2701. https://doi.org/10.3390/foods10112701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bridi R, Echeverría J, Larena A et al (2022) Honeybee pollen from southern chile: phenolic profile, antioxidant capacity, bioaccessibility, and inhibition of DNA damage. Front Pharmacol 13:775219. https://doi.org/10.3389/fphar.2022.775219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hanafy NAN, Eltonouby EAB, Salim EI et al (2023) Simultaneous administration of bevacizumab with bee-pollen extract-loaded hybrid protein hydrogel NPs is a promising targeted strategy against cancer cells. Int J Mol Sci 24:3548. https://doi.org/10.3390/ijms24043548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Drawbridge PC, Apea-Bah F, Silveira Hornung P, Beta T (2021) Bioaccessibility of phenolic acids in Canadian hulless barley varieties. Food Chem 358:129905. https://doi.org/10.1016/j.foodchem.2021.129905

    Article  CAS  PubMed  Google Scholar 

  40. Moreno-Ortega A, Pereira-Caro G, Ordóñez JL et al (2020) Bioaccessibility of bioactive compounds of ‘fresh garlic’ and ‘black garlic’ through in vitro gastrointestinal digestion. Foods 9:158582. https://doi.org/10.3390/foods9111582

    Article  CAS  Google Scholar 

  41. Alimoglu G, Guzelmeric E, Yuksel PI et al (2021) Monofloral and polyfloral bee pollens: comparative evaluation of their phenolics and bioactivity profiles. LWT 142:110973. https://doi.org/10.1016/j.lwt.2021.110973

    Article  CAS  Google Scholar 

  42. Kostić AŽ, Milinčić DD, Gašić UM et al (2019) Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L) plant. LWT 112:108244. https://doi.org/10.1016/j.lwt.2019.06.011

    Article  CAS  Google Scholar 

  43. Mohdaly AAA, Mahmoud AA, Roby MHH et al (2015) Phenolic extract from propolis and bee pollen: composition, antioxidant and antibacterial activities. J Food Biochem 39:538–547. https://doi.org/10.1111/jfbc.12160

    Article  CAS  Google Scholar 

  44. Karkar B, Şahin S, Güneş ME (2021) Evaluation of antioxidant properties and determination of phenolic and carotenoid profiles of chestnut bee pollen collected from Turkey. J Apic Res 60:765–774. https://doi.org/10.1080/00218839.2020.1844462

    Article  Google Scholar 

  45. Oroian M, Dranca F, Ursachi F (2022) Characterization of Romanian Bee Pollen—an important nutritional source. Foods 11:2633. https://doi.org/10.3390/foods11172633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. de Almeida J, F, Reis AS dos, Heldt LFS, et al (2017) Lyophilized bee pollen extract: a natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT Food Sci Technol 76:299–305. https://doi.org/10.1016/j.lwt.2016.06.017

    Article  CAS  Google Scholar 

  47. Bridi R, Atala E, Pizarro PN, Montenegro G (2019) Honeybee pollen load: phenolic composition and antimicrobial activity and antioxidant capacity. J Nat Prod 82:559–565. https://doi.org/10.1021/acs.jnatprod.8b00945

    Article  CAS  PubMed  Google Scholar 

  48. Bayram NE, Gercek YC, Çelik S et al (2021) Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin – similarities and differences. Arab J Chem 14:103004. https://doi.org/10.1016/j.arabjc.2021.103004

    Article  CAS  Google Scholar 

  49. Gercek YC, Celik S, Bayram S (2021) Screening of plant pollen sources, polyphenolic compounds, fatty acids and antioxidant/antimicrobial activity from bee pollen. Molecules 27:117. https://doi.org/10.3390/molecules27010117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang H, Lu Q, Liu R (2022) Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen. Food Chem 375:131908. https://doi.org/10.1016/j.foodchem.2021.131908

    Article  CAS  PubMed  Google Scholar 

  51. Velásquez P, Rodríguez K, Retamal M et al (2017) Relation between composition, antioxidant and antibacterial activities and botanical origin of multi-floral bee pollen. J Appl Bot Food Qual 90:306–314. https://doi.org/10.5073/JABFQ.2017.090.038

    Article  Google Scholar 

  52. Spulber R, Popa V, Babeanu N (2020) Flavonoid/phenolic profile and antioxidant activity of raw monofloral bee pollen from South Romania. AgroLife Sci J 9:305–312

    Google Scholar 

  53. Šarić A, Balog T, Sobočanec S et al (2009) Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem Toxicol 47:547–554. https://doi.org/10.1016/j.fct.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  54. Cheng N, Ren N, Gao H et al (2013) Antioxidant and hepatoprotective effects of Schisandra chinensis pollen extract on CCl4-induced acute liver damage in mice. Food Chem Toxicol 55:234–240. https://doi.org/10.1016/j.fct.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  55. Fanali C, Dugo L, Rocco A (2013) Nano-liquid chromatography in nutraceutical analysis: determination of polyphenols in bee pollen. J Chromatogr A 1313:270–274. https://doi.org/10.1016/j.chroma.2013.06.055

    Article  CAS  PubMed  Google Scholar 

  56. Nafea EA, Zidan EW, Marzouk WM et al (2017) Honeybee collected pollen as antibiotics to control American foul brood diseaase, at Giza Governorate. Egypt J Agric Res 95:1551–1563

    Google Scholar 

  57. Waś E, Szczęsna T, Rybak-Chmielewska H et al (2017) Application of HPLC-DAD technique for determination of phenolic compounds in bee pollen loads. J Apic Sci 61:153–162. https://doi.org/10.1515/jas-2017-0009

    Article  CAS  Google Scholar 

  58. De-Melo AAM, Estevinho LM, Moreira MM et al (2018) Phenolic profile by HPLC-MS, biological potential, and nutritional value of a promising food: monofloral bee pollen. J Food Biochem 42:e12536. https://doi.org/10.1111/jfbc.12536

    Article  CAS  Google Scholar 

  59. Özcan MM, Aljuhaimi F, Babiker EE et al (2019) Determination of antioxidant activity, phenolic compound, mineral contents and fatty acid compositions of bee pollen grains collected from different locations. J Apic Sci 63:69–79. https://doi.org/10.2478/jas-2019-0004

    Article  CAS  Google Scholar 

  60. Sawicki T, Starowicz M, Kłębukowska L, Hanus P (2022) The Profile of polyphenolic compounds, contents of total phenolics and flavonoids, and antioxidant and antimicrobial properties of bee products. Molecules 27:1301. https://doi.org/10.3390/molecules27041301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laaroussi H, Ferreira-Santos P, Genisheva Z et al (2023) Unveiling the techno-functional and bioactive properties of bee pollen as an added-value food ingredient. Food Chem 405:134958. https://doi.org/10.1016/j.foodchem.2022.134958

    Article  CAS  PubMed  Google Scholar 

  62. Ares AM, Bernal J, Janvier A, Toribio L (2022) Chiral and achiral separation of ten flavanones using supercritical fluid chromatography application to bee pollen analysis. J Chromatogr A 1685:463633. https://doi.org/10.1016/j.chroma.2022.463633

    Article  CAS  PubMed  Google Scholar 

  63. Hemmami H, Ben Seghir B, Ben Ali M et al (2020) Phenolic profile and antioxidant activity of bee pollen extracts from different regions of Algeria. Ovidius Univ Ann Chem 31:93–98. https://doi.org/10.2478/auoc-2020-0017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Turkish Beekeepers Association, particularly Civan Beekeeping Company for their support in sample collection.

Funding

This research was funded by Bursa Uludag University Scientific Research Projects Coordination Unit, grant number BUAP-(BTUAM)-2020/4.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AAB, PYO, OUC and SK; methodology, AAB, PYO, OUC and SK; validation, EB and SK; formal analysis, EB and SK; investigation, EB, TTU, MAC., BAC., EKA and PSD; resources, AAB, PYO, OUC. and SK; data curation, EB and SK; writing—original draft preparation, EB, TTU and SK; writing—review and editing, AAB, PYO and OUC; visualization, EB, TTU and SK; supervision, AAB, PYO, OUC and SK; project administration, AAB, PYO, OUC and SK; funding acquisition, AAB, PYO, OUC and SK. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Senem Kamiloglu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Compliance with Ethics requirements

The authors declare that this study complies with all ethical requirements.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akpinar Bayizit, A., Bekar, E., Unal, T.T. et al. Investigating the effect of harvest season on the bioaccessibility of bee pollen polyphenols by ultra-high performance liquid chromatography tandem mass spectrometry. Eur Food Res Technol 249, 2529–2542 (2023). https://doi.org/10.1007/s00217-023-04316-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04316-8

Keywords

Navigation