Skip to main content
Log in

Evaluation of the nutritional value of bee pollen by palynological, antioxidant, antimicrobial, and elemental characteristics

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The object of this study was to characterize bee pollen (BP) as a food supplement according to its palynological, antioxidant, antimicrobial properties, and elemental contents. Twelve plant families, 35 genera, and one species were determined by palynological analysis of BP. Verbascum spp., Papaver spp., and Vicia spp. were found the major floral sources of BP. Two samples were determined as monofloral Verbascum spp. bee pollen. Total flavonoid (TFC) and phenolic content (TPC) varied from 117.5 to 142.09 mg QE/100 g, and 386.59 to 743.73 mg GAE/100 g, respectively. According to 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 2,2′-azino-bis3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical cation assays, the BP samples demonstrated high antioxidant activity. Result of ferric reducing antioxidant power (FRAP) and metal chelating activities (MCA) assays were ranging from 61.17 to 69.7% and 74.99 to 87.78%. Antimicrobial activities of the BP were determined by the agar well diffusion and microplate method. Obtained results indicated that BP showed appreciable antibacterial activity against Escherichia coli, Bacillus cereus, and Staphylococcus aureus strains by remarkably decreasing bacterial growth. Thirty-one elements were analyzed in BP samples by inductively coupled plasma-mass spectrometry (ICP-MS). Target hazard quotients (THQ), hazard index (HI), and estimated daily intake (EDI) values were calculated using selected elements’ results. Considering these values, it was determined that the consumption of bee pollen was safe for adults and children. BP samples can be used as a food supplement because of their high antioxidant and antimicrobial capacity and elemental content.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bridi R, Atala E, Pizarro PN, Montenegro G (2019) Honeybee pollen load: phenolic composition and antimicrobial activity and antioxidant capacity. J Nat Prod 82(3):559–565. https://doi.org/10.1021/acs.jnatprod.8b00945

    Article  CAS  PubMed  Google Scholar 

  2. Muñoz E, Velásquez P, Rodriguez K, Montenegro G, Giordano A (2020) Influence of Brassica campestris and Galega officinalis on antioxidant activity of bee pollen. Rev Bras Farmacogn 30(3):444–449. https://doi.org/10.1007/s43450-020-00065-x

    Article  CAS  Google Scholar 

  3. Tutun H, Aluç Y, Kahraman HA, Sevin S, Yipel M, Ekici H (2022) The content and health risk assessment of selected elements in bee pollen and propolis from Turkey. J Food Compos Anal 105:104234. https://doi.org/10.1016/J.JFCA.2021.104234

    Article  CAS  Google Scholar 

  4. Sagona S, Bozzicolonna R, Nuvoloni R, Cilia G, Torracca B, Felicioli A (2017) Water activity of fresh bee pollen and mixtures of bee pollen-honey of different botanical origin. LWT 84:595–600. https://doi.org/10.1016/J.LWT.2017.06.015

    Article  CAS  Google Scholar 

  5. Borycka K, Grabek-Lejko D, Kasprzyk I (2015) Propiedades antioxidantes y antibacterianas de productos comerciales de polen de abejas. J Apic Res 54(5):491–502. https://doi.org/10.1080/00218839.2016.1185309

    Article  Google Scholar 

  6. Temizer İK, Güder A, Temel FA, Avci E (2018) A comparison of the antioxidant activities and biomonitoring of heavy metals by pollen in the urban environments. Environ Monit Assess. https://doi.org/10.1007/s10661-018-6829-6

    Article  PubMed  Google Scholar 

  7. Soares de Arruda VA et al (2021) Brazilian bee pollen: phenolic content, antioxidant properties and antimicrobial activity. J Apic Res 60(5):775–783. https://doi.org/10.1080/00218839.2020.1840854

    Article  Google Scholar 

  8. Stanciu OG, Marghitas LA, Dezmirean D, Campos MG (2012) Specific distribution of minerals in selected unifloral bee pollen. Food Sci Technol Lett 3(1):27–31

    CAS  Google Scholar 

  9. Dulger Altiner D, Sandikci Altunatmaz S, Sabuncu M, Aksu F, Sahan Y (2020) In-vitro bioaccessibility of antioxidant properties of bee pollen in Turkey. Food Sci Technol 41:133–141. https://doi.org/10.1590/FST.10220

    Article  Google Scholar 

  10. Thakur M, Nanda V (2020) Composition and functionality of bee pollen: a review. Trends Food Sci Technol 98:82–106. https://doi.org/10.1016/J.TIFS.2020.02.001

    Article  CAS  Google Scholar 

  11. Komosinska-Vassev K, Olczyk P, Kafmierczak J, Mencner L, Olczyk K (2015) Bee pollen: chemical composition and therapeutic application. Evid Based Complement Altern Med. https://doi.org/10.1155/2015/297425

    Article  Google Scholar 

  12. Aldgini HMM, Abdullah Al-Abbadi A, Abu-Nameh ESM, Alghazeer RO (2019) Determination of metals as bio indicators in some selected bee pollen samples from Jordan. Saudi J Biol Sci 26(7):1418–1422. https://doi.org/10.1016/j.sjbs.2019.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Taha EKA, Al-Jabr AM, Al-Kahtani SN (2017) Honey bees, bee-collected pollen and honey as monitors of environmental pollution at an industrial cement area in Saudi Arabia. J Kansas Entomol Soc 90(1):1–10. https://doi.org/10.2317/151230.1

    Article  Google Scholar 

  14. Altunatmaz SS, Tarhan D, Aksu F, Barutçu UB, Or ME (2017) Mineral element and heavy metal (Cadmium, lead and arsenic) levels of bee pollen in Turkey. Food Sci Technol 37:136–141. https://doi.org/10.1590/1678-457X.36016

    Article  Google Scholar 

  15. Węglińska M, Szostak R, Kita A, Nemś A, Mazurek S (2020) Determination of nutritional parameters of bee pollen by Raman and infrared spectroscopy. Talanta. https://doi.org/10.1016/j.talanta.2020.120790

    Article  PubMed  Google Scholar 

  16. da Silva A, de Freitas JAG, de Sattler BR, Souza LB, Almeida-Muradian AS, Barth OM (2015) A melissopalynological analysis of Apis mellifera L. loads of dried bee pollen in the southern Brazilian macro-region. Grana 54(4):305–312. https://doi.org/10.1080/00173134.2015.1096954

    Article  Google Scholar 

  17. Barth OM et al (2010) Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: a proposal for technical standardization. An Acad Bras Cienc 82(4):893–902. https://doi.org/10.1590/S0001-37652010000400011

    Article  PubMed  Google Scholar 

  18. Felek İ, Dündar O, Çobanoğlu DN (2021) Palynological, antioxidant and physicochemical properties of pollen loads from eastern Anatolia. Bee Stud Apic Res Inst 13(2):31–38. https://doi.org/10.51458/bstd.2021.15

    Article  Google Scholar 

  19. Carpes ST, Begnini R, de Alencar SM, Masson ML (2007) Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciência e Agrotecnologia 31(6):1818–1825. https://doi.org/10.1590/s1413-70542007000600032

    Article  CAS  Google Scholar 

  20. Lawag IL, Yoo O, Lim LY, Hammer K, Locher C (2021) Optimisation of bee pollen extraction to maximise extractable antioxidant constituents. Antioxidants. https://doi.org/10.3390/antiox10071113

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fatrcová-Šramková K, Nôžková J, Kačániová M, Máriássyová M, Rovná K, Stričík M (2013) Antioxidant and antimicrobial properties of monofloral bee pollen. J Environ Sci Heal Part B Pestic Food Contam Agric Wastes 48(2):133–138. https://doi.org/10.1080/03601234.2013.727664

    Article  CAS  Google Scholar 

  22. Almeida JF et al (2017) Lyophilized bee pollen extract: a natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT Food Sci Technol. https://doi.org/10.1016/J.LWT.2016.06.017

    Article  Google Scholar 

  23. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST (2002) Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J Agric Food Chem 50(8):2454–2458. https://doi.org/10.1021/jf011369q

    Article  CAS  PubMed  Google Scholar 

  24. Gökce H et al (2019) Structural, spectroscopic, radical scavenging activity, molecular docking and DFT studies of a synthesized Schiff base compound. J Mol Struct 1179:205–215. https://doi.org/10.1016/j.molstruc.2018.11.005

    Article  CAS  Google Scholar 

  25. Dinis TCP, Madeira VMC, Almeida LM (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315(1):161–169. https://doi.org/10.1006/ABBI.1994.1485

    Article  CAS  PubMed  Google Scholar 

  26. Gür M et al (2018) Some important plants for epilepsy treatment: antioxidant activity and flavonoid compositions. Iran J Sci Technol Trans A Sci 42(4):1847–1857. https://doi.org/10.1007/s40995-017-0361-3

    Article  Google Scholar 

  27. Rios JL, Recio MC, Villar A (1988) Screening methods for natural products with antimicrobial activity: a review of the literature. J Ethnopharmacol 23(2–3):127–149. https://doi.org/10.1016/0378-8741(88)90001-3

    Article  CAS  PubMed  Google Scholar 

  28. Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. https://doi.org/10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  29. Erdoğan A, Şeker ME, Kahraman SD (2022) Evaluation of environmental and nutritional aspects of bee pollen samples collected from East Black Sea Region, Turkey, via elemental analysis by ICP-MS. Biol Trace Elem Res. https://doi.org/10.1007/S12011-022-03217-3

    Article  PubMed  Google Scholar 

  30. Zafeiraki E, Kasiotis KM, Nisianakis P, Manea-Karga E, Machera K (2022) Occurrence and human health risk assessment of mineral elements and pesticides residues in bee pollen. Food Chem Toxicol 161:112826. https://doi.org/10.1016/J.FCT.2022.112826

    Article  CAS  PubMed  Google Scholar 

  31. Végh R, Csóka M, Sörös C, Sipos L (2021) Food safety hazards of bee pollen—a review. Trends Food Sci Technol 114(2021):490–509. https://doi.org/10.1016/j.tifs.2021.06.016

    Article  CAS  Google Scholar 

  32. Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I (2012) The weight of nations: an estimation of adult human biomass. BMC Public Health 12(1):1. https://doi.org/10.1186/1471-2458-12-439

    Article  Google Scholar 

  33. Portier K, Keith Tolson J, Roberts SM (2007) Body weight distributions for risk assessment. Risk Anal 27(1):11–26. https://doi.org/10.1111/j.1539-6924.2006.00856.x

    Article  PubMed  Google Scholar 

  34. Shomar B, Rashkeev SN (2021) A comprehensive risk assessment of toxic elements in international brands of face foundation powders. Environ Res. https://doi.org/10.1016/J.ENVRES.2020.110274

    Article  PubMed  Google Scholar 

  35. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(6):417–441. https://doi.org/10.1037/H0071325

    Article  Google Scholar 

  36. Campos MGR et al (2008) Pollen composition and standardisation of analytical methods. J Apic Res 47(2):154–161. https://doi.org/10.3896/ibra.1.47.2.12

    Article  CAS  Google Scholar 

  37. Behçet L, Yapar Y (2019) Important plants at the Matan Mountain (Bingöl) flora with regard to beekeeping. Biol Divers Conserv 12(1):149–159. https://doi.org/10.5505/biodicon.2019.13008

    Article  Google Scholar 

  38. Nuvoloni R et al (2021) Bee-pollen retailed in Tuscany (Italy): Labelling, palynological, microbiological, and mycotoxicological profile. Lwt 140(2020):110712. https://doi.org/10.1016/j.lwt.2020.110712

    Article  CAS  Google Scholar 

  39. Estevinho LM, Rodrigues S, Pereira AP, Feás X (2012) Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. Int J Food Sci Technol 47(2):429–435. https://doi.org/10.1111/j.1365-2621.2011.02859.x

    Article  CAS  Google Scholar 

  40. Deveza MV, Keller KM, Lorenzon MCA, Nunes LMT, Sales ÉO, Barth OM (2015) Mycotoxicological and palynological profiles of commercial brands of dried bee pollen. Braz J Microbiol 46(4):1171–1176. https://doi.org/10.1590/S1517-838246420140316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zou Y et al (2020) The botanical origin and antioxidant, anti-BACE1 and antiproliferative properties of bee pollen from different regions of South Korea. BMC Complement Med Ther 20(1):236. https://doi.org/10.1186/s12906-020-03023-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mayda N, Özkök A, Ecem Bayram N, Gerçek YC, Sorkun K (2020) Bee bread and bee pollen of different plant sources: determination of phenolic content, antioxidant activity, fatty acid and element profiles. J Food Meas Charact 14(4):1795–1809. https://doi.org/10.1007/s11694-020-00427-y

    Article  Google Scholar 

  43. Alimoglu G, Guzelmeric E, Yuksel PI, Celik C, Deniz I, Yesilada E (2021) Monofloral and polyfloral bee pollens: Comparative evaluation of their phenolics and bioactivity profiles. Lwt 142(2020):110973. https://doi.org/10.1016/j.lwt.2021.110973

    Article  CAS  Google Scholar 

  44. Atanassova J, Lazarova M (2010) Pollen analysis of bee pollen loads from the region of the town of Shumen (NE Bulgaria). Comptes Rendus L’Academie Bulg des Sci 63(3):369–374

    Google Scholar 

  45. Themelis T, Gotti R, Orlandini S, Gatti R (2019) Quantitative amino acids profile of monofloral bee pollens by microwave hydrolysis and fluorimetric high performance liquid chromatography. J Pharm Biomed Anal 173:144–153. https://doi.org/10.1016/j.jpba.2019.05.031

    Article  CAS  PubMed  Google Scholar 

  46. Dimou M, Tananaki C, Liolios V, Thrasyvoulou A (2014) Pollen foraging by honey bees (Apis Mellifera L.) in Greece: botanical and geographical origin. J Apic Sci 58(2):11–23. https://doi.org/10.2478/jas-2014-0018

    Article  Google Scholar 

  47. Kostić A et al (2019) Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. Lwt. https://doi.org/10.1016/j.lwt.2019.06.011

    Article  Google Scholar 

  48. Atsalakis E, Chinou I, Makropoulou M, Karabournioti S, Graikou K Evaluation of phenolic compounds in Cistus creticus bee pollen from Greece. Antioxid Antimicrob Proper

  49. Rocchetti G, Castiglioni S, Maldarizzi G, Carloni P, Lucini L (2019) UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. Int J Food Sci Technol 54(2):335–346. https://doi.org/10.1111/ijfs.13941

    Article  CAS  Google Scholar 

  50. Anjos O et al (2019) Bee pollen as a natural antioxidant source to prevent lipid oxidation in black pudding. Lwt 111:869–875. https://doi.org/10.1016/j.lwt.2019.05.105

    Article  CAS  Google Scholar 

  51. Bakchiche B et al (2020) Chemical composition and biological activities of honeybee products from algeria. J Appl Biotechnol Reports 7(2):93–103. https://doi.org/10.30491/jabr.2020.109498

    Article  CAS  Google Scholar 

  52. Muñoz E, Velásquez P, Rodriguez K, Montenegro G, Giordano A (2020) Influence of Brassica campestris and Galega officinalis on Antioxidant Activity of Bee Pollen. Rev Bras. https://doi.org/10.1007/s43450-020-00065-x

    Article  Google Scholar 

  53. Ilie CI et al (2022) Bee pollen extracts: chemical composition, antioxidant properties, and effect on the growth of selected probiotic and pathogenic bacteria. Antioxidants. https://doi.org/10.3390/antiox11050959

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kolarov R, Prvulović D, Gvozdenac S (2021) Antioxidant capacity of wild-growing orange mullein (Verbascum phlomoides L.). AГPOЗHAЊE 22(4):127–135. https://doi.org/10.7251/AGREN2104127K

    Article  Google Scholar 

  55. Kalaycıoğlu Z, Kaygusuz H, Döker S, Kolaylı S, Erim FB (2017) Characterization of Turkish honeybee pollens by principal component analysis based on their individual organic acids, sugars, minerals, and antioxidant activities. LWT Food Sci Technol 84:402–408. https://doi.org/10.1016/j.lwt.2017.06.003

    Article  CAS  Google Scholar 

  56. Lopes AJO et al (2020) Anti-inflammatory and antioxidant activity of pollen extract collected by Scaptotrigona affinis postica: in silico, in vitro, and in vivo studies. Antioxidants. https://doi.org/10.3390/antiox9020103

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cosmulescu S, Trandafir I, Nour V (2015) Chemical composition and antioxidant activity of walnut pollen samples. Not Bot Horti Agrobot Cluj-Napoca 43(2):361–365. https://doi.org/10.15835/nbha43210090

    Article  CAS  Google Scholar 

  58. Didaras NA, Karatasou K, Dimitriou TG, Amoutzias GD, Mossialos D (2020) Antimicrobial activity of bee-collected pollen and beebread: state of the art and future perspectives. Antibiot (Basel, Switzerland) 9(11):1–29. https://doi.org/10.3390/ANTIBIOTICS9110811

    Article  Google Scholar 

  59. Nikolaieva N, Kačániová M, González JC, Grygorieva O, Nôžková J (2019) Determination of microbiological contamination, antibacterial and antioxidant activities of natural plant hazelnut (Corylus avellana L.) pollen. J Environ Sci Heal Part B Pestic Food Contam Agric Wastes 54(6):525–532. https://doi.org/10.1080/03601234.2019.1603756

    Article  CAS  Google Scholar 

  60. Kaškonienė V, Adaškevičiūtė V, Kaškonas P, Mickienė R, Maruška A (2020) Antimicrobial and antioxidant activities of natural and fermented bee pollen. Food Biosci. https://doi.org/10.1016/j.fbio.2020.100532

    Article  Google Scholar 

  61. Graikou K et al (2011) Chemical analysis of Greek pollen—antioxidant, antimicrobial and proteasome activation properties. Chem Cent J 5(1):7–9. https://doi.org/10.1186/1752-153X-5-33

    Article  Google Scholar 

  62. Morais M, Moreira L, Feás X, Estevinho LM (2011) Honeybee-collected pollen from five Portuguese Natural Parks: palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chem Toxicol 49(5):1096–1101. https://doi.org/10.1016/j.fct.2011.01.020

    Article  CAS  PubMed  Google Scholar 

  63. Skalnaya MG, Skalny AV (2018) Essential trace elements in human health: a physician’s view. Publishing house of Tomsk state university, Russia

    Google Scholar 

  64. Liolios V, Tananaki C, Papaioannou A, Kanelis D, Rodopoulou MA, Argena N (2019) Mineral content in monofloral bee pollen: investigation of the effect of the botanical and geographical origin. J Food Meas Charact 13(3):1674–1682. https://doi.org/10.1007/S11694-019-00084-W

    Article  Google Scholar 

  65. Kostić AZ, Pešić MB, Mosić MD, Dojèinović BP, Natić MM, Trifković JD (2015) Mineral content of bee pollen from Serbia. Arh Hig Rada Toksikol 66(4):251–258. https://doi.org/10.1515/AIHT-2015-66-2630

    Article  PubMed  Google Scholar 

  66. Conti ME, Botrè F (2001) Honeybees and their products as potential bioindicators of heavy metals contamination. Environ Monit Assess 69(3):267–282. https://doi.org/10.1023/A:1010719107006

    Article  CAS  PubMed  Google Scholar 

  67. Álvarez-Ayuso E, Abad-Valle P (2017) Trace element levels in an area impacted by old mining operations and their relationship with beehive products. Sci Total Environ 599–600:671–678. https://doi.org/10.1016/J.SCITOTENV.2017.05.030

    Article  PubMed  Google Scholar 

  68. Özcan MM et al (2019) Determination of antioxidant activity, phenolic compound, mineral contents and fatty acid compositions of bee pollen grains collected from different locations. J Apic Sci 63(1):69–79. https://doi.org/10.2478/JAS-2019-0004

    Article  Google Scholar 

  69. Denisow B, Denisow-Pietrzyk M (2016) Biological and therapeutic properties of bee pollen: a review. J Sci Food Agric 96(13):4303–4309. https://doi.org/10.1002/jsfa.7729

    Article  CAS  PubMed  Google Scholar 

  70. Conti ME, Astolfi ML, Finoia MG, Massimi L, Canepari S (2022) Biomonitoring of element contamination in bees and beehive products in the Rome province (Italy). Environ Sci Pollut Res 29(24):36057–36074. https://doi.org/10.1007/S11356-021-18072-3

    Article  CAS  Google Scholar 

  71. Kostić AŽ et al (2022) Micro/trace/toxic elements and insecticide residues level in monofloral bee-collected sunflower pollen-health risk assessment. J Environ Sci Health Part B. https://doi.org/10.1080/03601234.2022.2079348

    Article  Google Scholar 

  72. Tutun H, Aluç Y, Kahraman HA, Sevin S, Yipel M, Ekici H (2022) The content and health risk assessment of selected elements in bee pollen and propolis from Turkey. J Food Compos Anal 105(2021):104234. https://doi.org/10.1016/j.jfca.2021.104234

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Central Laboratory Application and Research Center and Pilot University Coordination Central Unit of Bingol University.

Author information

Authors and Affiliations

Authors

Contributions

DNÇ supplied the bee pollen samples. İKT and AG extracted all samples in the study. DNÇ and İKT conducted the palynological analyses, elemental analysis and calculated hazard risk assessment. AG performed the TPC, TFC, and antioxidant assays. EDC analyzed the samples for antimicrobial activity. UY performed the statistical evaluation. All authors wrote the manuscript and approved its final version.

Corresponding author

Correspondence to Duygu Nur Çobanoğlu.

Ethics declarations

Conflict of interest

The authors of this article declare that they have no known competing financial interests or personal relationships that could have appeared to affect this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çobanoğlu, D.N., Kizilpinar Temizer, İ., Candan, E.D. et al. Evaluation of the nutritional value of bee pollen by palynological, antioxidant, antimicrobial, and elemental characteristics. Eur Food Res Technol 249, 307–325 (2023). https://doi.org/10.1007/s00217-022-04117-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04117-5

Keywords

Navigation