Skip to main content
Log in

Novel thermal and non-thermal millet processing technologies: advances and research trends

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Global agriculture and food security are greatly impacted by climate change, water resource depletion, and a rising population. Cereals such as rice, wheat, maize, barley, oats, and rye account for the vast majority of food consumed worldwide. The requirement to shift from the current grain staples is necessitated by the significant water needs of above crops. Millets have the potential to strengthen food security due to their high nutritive quality, drought resistance, adaptability to local growing conditions, resistance to pests and diseases, and resilience to environmental shocks. Despite the benefits, the utilization of millets is constrained due to the poor shelf life of the flour caused by the activity of enzymes such as lipase, lipoxygenase, peroxidases, and polyphenol oxidase. Numerous food processing techniques have been explored in an effort to stabilize millet products while maintaining their nutritive characteristics. Microwave, radiofrequency, infrared, ohmic heating, as well as non-thermal methods like pulsed electric field, cold plasma, irradiation, high-pressure processing, ozonation, and ultrasound treatment, have drawn the most attention among these technologies due to their short processing time, minimal nutrient loss, and lower energy consumption. The work reviews recent developments in thermal and non-thermal millet processing technologies. It also discusses challenges, bottlenecks, and perspectives for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

There is no dataset associated with the article.

References

  1. Aboud SA, Altemimi AB, Al-HiIphy RS, A., Yi-Chen, L., & Cacciola, F. (2019) A comprehensive review on infrared heating applications in food processing. Molecules 24(22):4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adebowale OJ, Taylor JRN, de Kock HL (2020) Stabilization of wholegrain sorghum flour and consequent potential improvement of food product sensory quality by microwave treatment of the kernels. LWT 132:109827

    Article  CAS  Google Scholar 

  3. Almeida RLJ, Santos NC, Padilha CE, Almeida Mota MM, Alcantara Silva VM, Andre AMMCN, Santos ES (2022) Application of pulsed electric field and drying temperature response on the thermodynamic and thermal properties of red rice starch (Oryza Sativa L.). J Food Process Eng 45(2):1–12

    Article  Google Scholar 

  4. Awad TS, Moharram HA, Shaltout OE, Asker D, Youssef MM (2012) Applications of ultrasound in analysis, processing and quality control of food: a review. Food Res Int 48(2):410–427

    Article  CAS  Google Scholar 

  5. Awika JM (2011) Major cereal grains production and use around the world. Advances in cereal science: implications to food processing and health promotion. American Chemical Society, pp 1–13

  6. Balasubramaniam VG, Ayyappan P, Sathvika S, Antony U (2019) Effect of enzyme pretreatment in the ultrasound assisted extraction of finger millet polyphenols. J Food Sci Technol 56(3):1583–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barba F, Sant’Ana A, Orlien V, Koubaa M (2017) Innovative technologies for food preservation: inactivation of spoilage and pathogenic microorganisms. Academic Press, pp 133–139

  8. Bhangu SK, Singla R, Colombo E, Ashokkumar M, Cavalieri F (2018) Sono-transformation of tannic acid into biofunctional ellagic acid micro/nanocrystals with distinct morphologies. Green Chem 20(4):816–821

    Article  CAS  Google Scholar 

  9. Bisht B, Bhatnagar P, Gururani P, Kumar V, Tomar MS, Sinhmar R, Rathi N, Kumar S (2021) Food irradiation: effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables– a review. Trends Food Sci Technol 114:372–385

    Article  CAS  Google Scholar 

  10. Bucsella B, Takacs A, Vizer V, Schwendener U, Tomoskozi S (2016) Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours. Food Chem 190:990–996

    Article  CAS  PubMed  Google Scholar 

  11. Cappato LP, Ferreira MV, Guimaraes JT, Portela JB, Costa AL, Freitas MQ, Cruz AG (2017) Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends Food Sci Technol 62:104–112

    Article  CAS  Google Scholar 

  12. Castanha N, da Matta Junior MD, Augusto PED (2017) Potato starch modification using the ozone technology. Food Hydrocolloids 66:343–356

    Article  CAS  Google Scholar 

  13. Chandrasekaran S, Ramanathan S, Basak T (2013) Microwave food processing—a review. Food Res Int 52(1):243–261

    Article  CAS  Google Scholar 

  14. Cui R, Zhu F (2020) Effect of ultrasound on structural and physicochemical properties of sweet potato and wheat flours. Ultrason Sonochem 66:105–118

    Article  Google Scholar 

  15. Cullen PJ, Tiwari BK, O’Donnell CP, Muthukumarappan K (2009) Modelling approaches to ozone processing of liquid foods. Trends Food Sci Technol 20(3–4):125–136

    Article  CAS  Google Scholar 

  16. Das I, Kumar G, Shah NG (2013) Microwave heating as an alternative quarantine method for disinfestation of stored food grains. Int J Food Sci 2013:1–13. https://doi.org/10.1155/2013/926468

    Article  Google Scholar 

  17. Devi PB, Vijayabharathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2011) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 51(6):1021–1040

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dias-Martins AM, Cappato LP, da Costa Mattos M, Rodrigues FN, Pacheco S, Carvalho CWP (2019) Impacts of ohmic heating on decorticated and whole pearl millet grains compared to open-pan cooking. J Cereal Sci 85:120–129

    Article  CAS  Google Scholar 

  19. Diouf A, Sarr F, Sene B, Ndiaye C, Fall SM, Ayessou NC (2019) Pathways for reducing anti-nutritional factors: prospects for Vigna unguiculata. J Nutr Health Food Sci 7(2):1–10

    Article  Google Scholar 

  20. Ezekiel R, Rana G, Singh N, Singh S (2007) Physicochemical, thermal and pasting properties of starch separated from γ-irradiated and stored potatoes. Food Chem 105(4):1420–1429

    Article  CAS  Google Scholar 

  21. Fadiji T, Ashtiani SHM, Onwude DI, Li Z, Opara UL (2021) Finite element method for freezing and thawing industrial food processes. Foods 10(4):869

    Article  PubMed  PubMed Central  Google Scholar 

  22. Farkas DF, Hoover DG (2000) High pressure processing. J Food Sci 65(8):47–64

    Article  Google Scholar 

  23. Gao S, Liu H, Sun L, Liu N, Wang J, Huang Y, Wang F, Cao J, Fan R, Zhang X, Wang M (2019) The effects of dielectric barrier discharge plasma on physicochemical and digestion properties of starch. Int J Biol Macromol 138:819–830. https://doi.org/10.1016/j.ijbiomac.2019.07.147

    Article  CAS  PubMed  Google Scholar 

  24. Gavahian M, Chu Y-H, Farahnaky A (2019) Effects of ohmic and microwave cooking on textural softening and physical properties of rice. J Food Eng 243:114–124. https://doi.org/10.1016/j.jfoodeng.2018.09.010

    Article  CAS  Google Scholar 

  25. Gavahian M, Tiwari BK, Chu Y-H, Ting Y, Farahnaky A (2019) Food texture as affected by ohmic heating: mechanisms involved, recent findings, benefits, and limitations. Trends Food Sci Technol 86:328–339. https://doi.org/10.1016/j.tifs.2019.02.022

    Article  CAS  Google Scholar 

  26. Gomez M, Martínez MM (2016) Changing flour functionality through physical treatments for the production of gluten-free baking goods. J Cereal Sci 67:68–74. https://doi.org/10.1016/j.jcs.2015.07.009

    Article  CAS  Google Scholar 

  27. Gomez-Lopez VM, Ragaert P, Debevere J, Devlieghere F (2007) Pulsed light for food decontamination: a review. Trends Food Sci Technol 18(9):464–473. https://doi.org/10.1016/j.tifs.2007.03.010

    Article  CAS  Google Scholar 

  28. Gopal DS, Bhuvana S (2021) Effect of microwave treatment on phytochemical, functional and rheological property of Kodo millet (Paspalum scrobiculatum). Pharma Innov J 10(11):397–401

    Google Scholar 

  29. Gulati P, Sabillon L, Rose DJ (2018) Effects of processing method and solute interactions on pepsin digestibility of cooked proso millet flour. Food Res Int 109:583–588

    Article  CAS  PubMed  Google Scholar 

  30. Guzel-Seydim ZB, Greene AK, Seydim AC (2004) Use of ozone in the food industry. LWT Food Sci Technol 37(4):453–460

    Article  CAS  Google Scholar 

  31. Hassan AB, von Hoersten D, Mohamed Ahmed IA (2019) Effect of radio frequency heat treatment on protein profile and functional properties of maize grain. Food Chem 271:142–147. https://doi.org/10.1016/j.foodchem.2018.07.190

    Article  CAS  PubMed  Google Scholar 

  32. Hassan S, Imran M, Ahmad MH, Khan MI, Xu C, Khan MK, Muhammad N (2020) Phytochemical characterization of ultrasound-processed sorghum sprouts for the use in functional foods. Int J Food Prop 23(1):853–863. https://doi.org/10.1080/10942912.2020.1762644

    Article  CAS  Google Scholar 

  33. Hu A, Li Y, Zheng J (2019) Dual-frequency ultrasonic effect on the structure and properties of starch with different size. LWT 106:254–262. https://doi.org/10.1016/j.lwt.2019.02.040

    Article  CAS  Google Scholar 

  34. Hwang H-J, Cheigh C-I, Chung M-S (2018) Comparison of bactericidal effects of two types of pilot-scale intense-pulsed-light devices on cassia seeds and glutinous millet. Innov Food Sci Emerg Technol 49:170–175

    Article  CAS  Google Scholar 

  35. Ildiko SG, Klara KA, Marianna TM, Agnes B, Zsuzsanna MB, Balint C (2006) The effect of radio frequency heat treatment on nutritional and colloid-chemical properties of different white mustard (Sinapis alba L.) varieties. Innov Food Sci Emerg Technol 7:74–79. https://doi.org/10.1016/j.ifset.2005.06.001

    Article  CAS  Google Scholar 

  36. Jaddu S, Pradhan RC, Dwivedi M (2022) Effect of multipin atmospheric cold plasma discharge on functional properties of little millet (Panicum miliare) flour. Innov Food Sci Emerg Technol 77:102957. https://doi.org/10.1016/j.ifset.2022.102957

    Article  CAS  Google Scholar 

  37. Jeon M-S, Park K-M, Yu H, Park J-Y, Chang P-S (2019) Effect of intense pulsed light on the deactivation of lipase: enzyme-deactivation kinetics and tertiary structural changes by fragmentation. Enzyme Microb Technol 124:63–69. https://doi.org/10.1016/j.enzmictec.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  38. Jittanit W, Khuenpet K, Kaewsri P, Dumrongpongpaiboon N, Hayamin P, Jantarangsri K (2017) Ohmic heating for cooking rice: electrical conductivity measurements, textural quality determination and energy analysis. Innov Food Sci Emerg Technol 42:16–24. https://doi.org/10.1016/j.ifset.2017.05.008

    Article  CAS  Google Scholar 

  39. Jwa MK, Lim SB, Mok CK, Park YS (2001) Inactivation of microorganisms and enzymes in foxtail millet takju by high hydrostatic pressure treatment. Korean J Food Sci Technol 33(2):226–230

    Google Scholar 

  40. Kala K, B., Mohan, R., V. (2012) Effect of microwave treatment on the antinutritional factors of two accessions of velvet bean, Mucuna pruriens (L.). Int Food Res J 19(3):961–969

    CAS  Google Scholar 

  41. Kramer B, Muranyi P (2013) Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. J Appl Microbiol 116(3):596–611. https://doi.org/10.1111/jam.12394

    Article  CAS  PubMed  Google Scholar 

  42. Kumar SR, Sadiq MB, Anal AK (2020) Comparative study of physicochemical and functional properties of pan and microwave cooked underutilized millets (proso and little). LWT 128:109465. https://doi.org/10.1016/j.lwt.2020.109465

    Article  CAS  Google Scholar 

  43. Li B, Zhao L, Chen H, Sun D, Deng B, Li J, Liu Y, Wang F (2016) Inactivation of lipase and lipoxygenase of wheat germ with temperature-controlled short wave infrared radiation and its effect on storage stability and quality of wheat germ oil. PLoS ONE 11(12):e0167330. https://doi.org/10.1371/journal.pone.0167330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Hu A, Zheng J, Wang X (2019) Comparative studies on structure and physiochemical changes of millet starch under microwave and ultrasound at the same power. Int J Biol Macromol 141:76–84

    Article  CAS  PubMed  Google Scholar 

  45. Liang K, Liu Y, Liang S (2021) Analysis of the characteristics of foxtail millet during storage under different light environments. J Cereal Sci 101:103302. https://doi.org/10.1016/j.jcs.2021.103302

    Article  CAS  Google Scholar 

  46. Ling B, Ouyang S, Wang S (2019) Radio-frequency treatment for stabilization of wheat germ: Storage stability and physicochemical properties. Innov Food Sci Emerg Technol 52:158–165. https://doi.org/10.1016/j.ifset.2018.12.002

    Article  CAS  Google Scholar 

  47. Lohani UC, Muthukumarappan K (2016) Application of the pulsed electric field to release bound phenolics in sorghum flour and apple pomace. Innov Food Sci Emerg Technol 35:29–35

    Article  CAS  Google Scholar 

  48. Lokeswari R, Sharanyakanth PS, Mahendran R (2021) Improvement in millet soaking by way of bubbled cold plasma processed air exposure; phytic acid reduction cum nutrient analysis concern. Front Adv Mater Res 3(2):1–16

    Google Scholar 

  49. Lokeswari R, Sharanyakanth PS, Jaspin S, Mahendran R (2021) Cold plasma effects on changes in physical, nutritional, hydration, and pasting properties of pearl millet (Pennisetumglaucum). IEEE Trans Plasma Sci 49(5):1745–1751

    Article  CAS  Google Scholar 

  50. Mahendran R, Ramanan KR, Barba FJ, Lorenzo JM, Lopez-Fernandez O, Munekata PES, Roohinejad S, Sant’Ana AS, Tiwari BK (2019) Recent advances in the application of pulsed light processing for improving food safety and increasing shelf life. Trends Food Sci Technol 88:67–79. https://doi.org/10.1016/j.tifs.2019.03.010

    Article  CAS  Google Scholar 

  51. Mahmoud NS, Awad SH, Madani RMA, Osman FA, Elmamoun K, Hassan AB (2015) Effect of γ radiation processing on fungal growth and quality characteristics of millet grains. Food Sci Nutr 4(3):342–347. https://doi.org/10.1002/fsn3.295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marston K, Khouryieh H, Aramouni F (2014) Evaluation of sorghum flour functionality and quality characteristics of gluten-free bread and cake as influenced by ozone treatment. Food Sci Technol Int 21(8):631–640

    Article  PubMed  Google Scholar 

  53. Ministry of Agriculture and Farmers Welfare. (2022). Millet production. Retrieved from https://pib.gov.in/PressReleasePage.aspx?PRID=1796559

  54. Mohamed EA, Mohamed Ahmed IA, Yagoub AEA, Babiker EE (2010) Effects of radiation process on total protein and amino acids composition of raw and processed pearl millet flour during storage. Int J Food Sci Technol 45(5):906–912. https://doi.org/10.1111/j.1365-2621.2010.02228.x

    Article  CAS  Google Scholar 

  55. Monroy Y, Rivero S, García MA (2018) Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason Sonochem 42:795–804. https://doi.org/10.1016/j.ultsonch.2017.12.048

    Article  CAS  PubMed  Google Scholar 

  56. Mukisa IM, Muyanja CMBK, Byaruhanga YB, Schüller RB, Langsrud T, Narvhus JA (2012) Gamma irradiation of sorghum flour: Effects on microbial inactivation, amylase activity, fermentability, viscosity and starch granule structure. Radiat Phys Chem 81(3):345–351. https://doi.org/10.1016/j.radphyschem.2011.11.021

    Article  CAS  Google Scholar 

  57. Nazari B, Mohammadifar MA, Shojaee-Aliabadi S, Feizollahi E, Mirmoghtadaie L (2018) Effect of ultrasound treatments on functional properties and structure of millet protein concentrate. Ultrason Sonochem 41:382–388

    Article  CAS  PubMed  Google Scholar 

  58. O’Sullivan J, Murray B, Flynn C, Norton I (2016) The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocolloids 53:141–154. https://doi.org/10.1016/j.foodhyd.2015.02.009

    Article  CAS  Google Scholar 

  59. Premi M, Khan KA (2018) Irradiation technology: processing of fruits and vegetables. Technological interventions in the processing of fruits and vegetables. Apple Academic Press, pp 209–226

  60. Pricaz MARIA, Uta AC (2015) Gamma radiation for improvements in food industry, environmental quality and healthcare. Romnian J Biophys 25(2):143–162

    Google Scholar 

  61. Qu C, Wang H, Liu S, Wang F, Liu C (2017) Effects of microwave heating of wheat on its functional properties and accelerated storage. J Food Sci Technol 54(11):3699–3706. https://doi.org/10.1007/s13197-017-2834-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rahate KA, Madhumita M, Prabhakar PK (2021) Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT 138:110796

    Article  CAS  Google Scholar 

  63. Rajkovic A, Tomasevic I, De Meulenaer B, Devlieghere F (2017) The effect of pulsed UV light on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus and staphylococcal enterotoxin A on sliced fermented salami and its chemical quality. Food Control 73:829–837. https://doi.org/10.1016/j.foodcont.2016.09.029

    Article  CAS  Google Scholar 

  64. Rani S, Singh R, Sehrawat R, Kaur BP, Upadhyay A (2018) Pearl millet processing: a review. Nutr Food Sci 48(1):30–44. https://doi.org/10.1108/nfs-04-2017-0070

    Article  Google Scholar 

  65. Rao MV, Akhil KG, Sunil CK, Venkatachalapathy N, Jaganmohan R (2021) Effect of microwave treatment on physical and functional properties of foxtail millet flour. Inte J Chem Stud 9(1):2762–2767. https://doi.org/10.22271/chemi.2021.v9.i1am.11641

    Article  Google Scholar 

  66. Rastogi NK (2012) Recent trends and developments in infrared heating in food processing. Crit Rev Food Sci Nutr 52(9):737–760. https://doi.org/10.1080/10408398.2010.508138

    Article  CAS  PubMed  Google Scholar 

  67. Reddy CK, Viswanath KK (2019) Impact of γ-irradiation on physicochemical characteristics, lipoxygenase activity and antioxidant properties of finger millet. J Food Sci Technol 56(5):2651–2659. https://doi.org/10.1007/s13197-019-03753-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rousta M, Sadeghi AA, Shawrang P, AimnAfshar M, Chamani M (2014) Effect of gamma, electron beam and infrared radiation treatment on the nutritional value and anti-nutritional factors of sorghum grain. Iran J Appl Anim Sci 4(4):723–731

    Google Scholar 

  69. Sarangapani C, Thirumdas R, Devi Y, Trimukhe A, Deshmukh RR, Annapure US (2016) Effect of low-pressure plasma on physico–chemical and functional properties of parboiled rice flour. LWT 69:482–489

    Article  CAS  Google Scholar 

  70. Sharanagat VS, Suhag R, Anand P, Deswal G, Kumar R, Chaudhary A, Singh L, Singh Kushwah O, Mani S, Kumar Y, Nema PK (2019) Physico-functional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench]. J Cereal Sci 85:111–119. https://doi.org/10.1016/j.jcs.2018.11.013

    Article  CAS  Google Scholar 

  71. Sharma N, Goyal SK, Alam T, Fatma S, Chaoruangrit A, Niranjan K (2018) Effect of high pressure soaking on water absorption, gelatinization, and biochemical properties of germinated and non-germinated foxtail millet grains. J Cereal Sci 83:162–170. https://doi.org/10.1016/j.jcs.2018.08.013

    Article  CAS  Google Scholar 

  72. Shawrang P, Sadeghi AA, Behgar M, Zareshahi H, Shahhoseini G (2011) Study of chemical compositions, antinutritional contents and digestibility of electron beam irradiated sorghum grains. Food Chem 125(2):376–379

    Article  CAS  Google Scholar 

  73. Shen H, Guo Y, Zhao J, Zhao J, Ge X, Zhang Q, Yan W (2021) The multi-scale structure and physicochemical properties of mung bean starch modified by ultrasound combined with plasma treatment. Int J Biol Macromol 191:821–831. https://doi.org/10.1016/j.ijbiomac.2021.09.157

    Article  CAS  PubMed  Google Scholar 

  74. Siddhuraju P, Makkar HPS, Becker K (2002) The effect of ionising radiation on antinutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chem 78(2):187–205

    Article  CAS  Google Scholar 

  75. Singh A, Gupta S, Kaur R, Gupta HR (2017) Process optimization for anti-nutrient minimization of millets. Asian J Dairy Food Res. 36(4):322–326. https://doi.org/10.18805/ajdfr.dr-1215

    Article  Google Scholar 

  76. Singh S, Singh N, Ezekiel R, Kaur A (2011) Effects of gamma-irradiation on the morphological, structural, thermal and rheological properties of potato starches. Carbohyd Polym 83(4):1521–1528. https://doi.org/10.1016/j.carbpol.2010.09.063

    Article  CAS  Google Scholar 

  77. Sirohi R, Tarafdar A, Kumar Gaur V, Singh S, Sindhu R, Rajasekharan R, Madhavan A, Binod P, Kumar S, Pandey A (2021) Technologies for disinfection of food grains: advances and way forward. Food Res Int 145:110396. https://doi.org/10.1016/j.foodres.2021.110396

    Article  CAS  PubMed  Google Scholar 

  78. Sruthi NU, Rao PS (2021) Effect of processing on storage stability of millet flour: a review. Trends Food Sci Technol 112:58–74. https://doi.org/10.1016/j.tifs.2021.03.043

    Article  CAS  Google Scholar 

  79. Sun X, Saleh ASM, Lu Y, Sun Z, Zhang X, Ge X, Shen H, Yu X, Li W (2022) Effects of ultra-high pressure combined with cold plasma on structural, physicochemical, and digestive properties of proso millet starch. Int J Biol Macromol 212:146–154. https://doi.org/10.1016/j.ijbiomac.2022.05.128

    Article  CAS  PubMed  Google Scholar 

  80. Swaminathan I, Guha M, Hunglur UH, Rao DB (2015) Optimization of infrared heating conditions of sorghum flour using central composite design. Food Sci Biotechnol 24(5):1667–1671. https://doi.org/10.1007/s10068-015-0216-7

    Article  CAS  Google Scholar 

  81. Swamy GJ, Kasiviswanathan M (2021) Application of ozone technology for grain processing industries. Non-Thermal Processing Technologies for the Grain Industry. CRC Press, pp 153–170

  82. Taylor JRN, Kruger J (2016) Millets. Encyclopedia of Food and Health. Elsevier, pp 748–757. https://doi.org/10.1016/b978-0-12-384947-2.00466-9

  83. Tiwari BK, Brennan CS, Curran T, Gallagher E, Cullen PJ, O’ Donnell, C. P. (2010) Application of ozone in grain processing. J Cereal Sci 51(3):248–255. https://doi.org/10.1016/j.jcs.2010.01.007

    Article  CAS  Google Scholar 

  84. TNAU (2022). TNAU Agritechportal: Post Harvest Technology. Retrieved July 27, 2022, from https://agritech.tnau.ac.in/postharvest/pht_millets_littlemillets.html

  85. Vanga SK, Wang J, Jayaram S, Raghavan V (2021) Effects of pulsed electric fields and ultrasound processing on proteins and enzymes: a review. Processes 9(4):722

    Article  CAS  Google Scholar 

  86. Wang Y, Zhang L, Johnson J, Gao M, Tang J, Powers JR, Wang S (2014) Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food Bioprocess Technol 7(1):278–288

    Article  CAS  Google Scholar 

  87. Yadav DN, Anand T, Kaur J, Singh AK (2012) Improved storage stability of pearl millet flour through microwave treatment. Agric Res 1(4):399–404. https://doi.org/10.1007/s40003-012-0040-8

    Article  Google Scholar 

  88. Yadav S, Mishra S, Pradhan RC (2021) Ultrasound-assisted hydration of finger millet (Eleusine coracana) and its effects on starch isolates and antinutrients. Ultrason Sonochemistry 73:105542. https://doi.org/10.1016/j.ultsonch.2021.105542

    Article  CAS  Google Scholar 

  89. Yan S, Wu X, Faubion J, Bean SR, Cai L, Shi YC, Sun XS, Wang D (2012) Ethanol-Production performance of ozone-treated tannin grain sorghum flour. Cereal Chem J 89(1):30–37. https://doi.org/10.1094/cchem-06-11-0075

    Article  CAS  Google Scholar 

  90. Yang HW, Hsu CK, Yang YF (2014) Effect of thermal treatments on anti-nutritional factors and antioxidant capabilities in yellow soybeans and green-cotyledon small black soybeans. J Sci Food Agric 94(9):1794–1801. https://doi.org/10.1002/jsfa.6494

    Article  CAS  PubMed  Google Scholar 

  91. Yang MD, Chen X, Sun ZY, Li G, Liu ZD (2006) Study on the characteristics of ohmic heating of rice. Food Sci Technol 8:74–76

    Google Scholar 

  92. Yarrakula SAS, Rehaman A, Saravanan S (2022) Effect of hot air assisted radio frequency technology on physical and functional properties of pearl millet. Pharma Innov J 11(5):633–637

    CAS  Google Scholar 

  93. Yildirim A, Oner MD, Bayram M (2011) Effect of soaking and ultrasound treatments on texture of chickpea. J Food Sci Technol 50(3):455–465. https://doi.org/10.1007/s13197-011-0362-8

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhang Y, Jing X, Chen Z, Wang X (2022) Purification and identification of antioxidant peptides from millet gliadin treated with high hydrostatic pressure. LWT 164:113654

    Article  CAS  Google Scholar 

  95. Zhang Y, Zhang X, Zhang Z, Chen Z, Jing X, Wang X (2022) Effect of high hydrostatic pressure treatment on the structure and physicochemical properties of millet gliadin. LWT 154:112755

    Article  CAS  Google Scholar 

  96. Zhi W, Zhou Y, Wang R, Wang M, Wang W, Hu A, Zheng J (2022) Effect of microwave treatment on the properties of starch in millet kernels. Starch - Starke. https://doi.org/10.1002/star.202200063

    Article  Google Scholar 

  97. Zhu F, Li H (2019) Modification of quinoa flour functionality using ultrasound. Ultrason Sonochem 52:305–310. https://doi.org/10.1016/j.ultsonch.2018.11.027

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jayasree Joshi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The authors declare that the review does not contain any studies involving animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, T.J., Singh, S.M. & Rao, P.S. Novel thermal and non-thermal millet processing technologies: advances and research trends. Eur Food Res Technol 249, 1149–1160 (2023). https://doi.org/10.1007/s00217-023-04227-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04227-8

Keywords

Navigation