Skip to main content
Log in

A rapid method for distinguishing similar gelatins based on terahertz spectrum

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Distinguishing similar gelatins are essential for pharmaceutical administration and therapy based on traditional Chinese medicine. Differed from the conventional studies, this study focuses on a reaction-free terahertz approach to identify gelatins made of asinine, bovine, and porcine skins. Samples in tablets form are measured by terahertz time-domain spectroscopy and the calculated optical parameters are processed by a principal component analysis algorithm. Additionally, linear support vector machines are used to classify gelatin varieties and the performance is discussed with respect to the number of principal components kept for modelling. It is founded that three principal components are optimal to identify similar gelatins in a reduced feature space and the extinction coefficient is more efficient in distinguishing three different gelatins. This study proves the feasibility of THz time-domain spectroscopy in gelatin administration in traditional Chinese medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. The Pharmacopoeia Commission of PRC (e.d.) (2020) Pharmacopoeia of the People’s Republic of China. China Medical Science Press, Beijing

    Google Scholar 

  2. Yan Z, Tingting Y, Shuqing G et al (2019) Rna-sequencing based bone marrow cell transcriptome analysis reveals the potential mechanisms of E’jiao against blood-deficiency in mice. Biomed Pharmacother 118:109291

    Article  CAS  Google Scholar 

  3. Yan Z, Tingting Y, Zhuping H et al (2019) Pharmacological and transcriptome profiling analyses of Fufang E’jiao Jiang during chemotherapy-induced myelosuppression in mice. J Ethnopharmacol 238:111869

    Article  CAS  Google Scholar 

  4. Xue Li, Feng S, Liping G et al (2017) Species-specific identification of collagen components in colla corii asini using a nano-liquid chromatography tandem mass spectrometry proteomics approach [J]. Int J Nanomed 12:4443–4454

    Article  Google Scholar 

  5. Hongzhong Wu, Chunyan R, Fang Y et al (2016) Extraction and identification of collagen-derived peptides with hematopoietic activity from colla corii asini. J Ethnopharmacol 182:129–136

    Article  CAS  Google Scholar 

  6. Wenjuan Z, Shenghui C, XianLong C et al (2019) An optimized taqman real-time pcr method for authentication of asini corii colla (donkey-hide gelatin). J Pharm Biomed Anal 170:196–203

    Article  CAS  Google Scholar 

  7. Shyang-Chwen S, Jhong-Yong H, Yi-Yang L et al (2020) Specific, sensitive and rapid authentication of donkey-hide gelatine (colla corii asini) in processed food using an isothermal nucleic acid amplification assay. J Food Sci Technol 57:2877–2883

    Article  CAS  Google Scholar 

  8. Beow Keat Y, Lay-Harn G (2019). Differentiation of bovine from porcine gelatin capsules using gel electrophoresis method. Food Chem 274(15):16–19

    Google Scholar 

  9. Shao Yongni Gu, Weimin QY et al (2020) Lipids monitoring in Scenedesmus obliquus based on terahertz technology. Biotechnol Biofuels 13(1):161

    Article  CAS  Google Scholar 

  10. Ryoya M, Kosuke M, Seiji N et al (2020) Terahertz tag identifiable through shielding materials using machine learning. Opt Express 28(3):3517–3527

    Article  Google Scholar 

  11. Ming Y, Jianlin W, Haoliang H et al (2020) Research on flavonoids based on terahertz time-domain spectroscopy. Spectrosc Spectr Anal 40(12):3919–3924

    Google Scholar 

  12. Zhangfang Y, Qihao W, Ziyang C et al (2020) Quantitative analysis of metal particles concentration in the composites based on terahertz linear scatter method. IEEE Transac Terahertz Sci Technol 10(5):490–494

    Google Scholar 

  13. Ming Y, Jianlin W, Haoling H et al (2020) Analysis of flavonoid compounds by terahertz spectroscopy combined with chemometrics. ACS Omega 5(29):18134–18141

    Article  CAS  Google Scholar 

  14. Zhou Q, Shen Y, Li Y et al (2020) Terahertz spectroscopic characterizations and DFT calculations of carbamazepine cocrystals with nicotinamide, saccharin and fumaric acid. Spectrochim Acta Part A Mol Biomol Spectrosc 236:118346

    Article  CAS  Google Scholar 

  15. Wang C, Zhou R, Huang Y et al (2019) Terahertz spectroscopic imaging with discriminant analysis for detecting foreign materials among sausages. Food Control 97:100–104

    Article  CAS  Google Scholar 

  16. Jingrong W, Zhuoyong Z, Zhenwei Z et al (2016) Identification of official rhubarb samples by using pls and terahertz time-domain spectroscopy. Spectrosc Spectr Anal 36(2):316–321

    Google Scholar 

  17. Jie L, Qijia G, Tianying C et al (2018) Reliable origin identification of Scutellaria baicalensis based on terahertz time-domain spectroscopy and pattern recognition. Optik 174:7–14

    Article  CAS  Google Scholar 

  18. Yuping Y, Cheng Z, Haishun L et al (2019) Identification of two types of safflower and bezoar by terahertz. Spectroscopy 39(1):45–49

    Google Scholar 

  19. Timothy D, Richard B, Daniel M (2001) Material parameter estimation with terahertz time-domain spectroscopy. J Opt Soc Am A Opt Image Sci Vis 18(7):1562–1571

    Article  Google Scholar 

  20. Lionel D, Frederic G, Louis CJ (2002) A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J Sel Top Quantum Electron 2(3):739–746

    Google Scholar 

  21. Li X, Yin L, Peixin J et al (2020) Terahertz spectroscopic characterizations and DFT calculations of indomethacin cocrystals with nicotinamide and saccharin. Spectrochim Acta Part A Mol Biomol Spectrosc 249:119309

    Google Scholar 

  22. Fan H, Mingming L, Maoqiang X et al (2019) A combined study on the skeletal vibration of aminopyrine by terahertz time-domain spectroscopy and DFT simulation. Optik 208:163913

    Google Scholar 

  23. Jianxiong S, Zhongjie Z, Zongchang Z et al (2021) Ultra-broadband terahertz fingerprint spectrum of melatonin with vibrational mode analysis. Spectrochim Acta Part A Mol Biomol Spectrosc 247:119141

    Article  CAS  Google Scholar 

  24. Hong C, Xianbin Z, Junfei S et al (2015) Vibration-rotation absorption spectrum of water vapor molecular in frequency selector at 0.5–2.5 thz range. Optik 126:3533–3537

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Major Scientific and Technological Innovation Projects in Shandong Province (2019JZZY010448), Science Foundation of Shandong Academy of Sciences for Youth (2020QN0030), and Natural Science Foundation of Shandong Province (ZR2020KF007, 2016GGX101010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianying Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, X., Liu, L. et al. A rapid method for distinguishing similar gelatins based on terahertz spectrum. Eur Food Res Technol 247, 2927–2933 (2021). https://doi.org/10.1007/s00217-021-03836-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03836-5

Keywords

Navigation