Skip to main content

Advertisement

Log in

Edible Rhus tripartita fruit as source of health-promoting compounds: characterization of bioactive components and antioxidant properties

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The fruits of Rhus tripartita had recently attracted great attention due to its notable therapeutic effects. Their potential effects are attributed to the richness of diverse classes of secondary metabolites. The objective of this research was to access the determination of chemical composition and antioxidant properties of R. tripartita fruit extracts and its partitioned fractions (absolute petroleum ether, 70% aqueous ethanol, absolute ethyl acetate and water). LC–ESI-MS/MS and FTIR–ATR were used to assess the potential of R. tripartita fruits as a source of health-promoting constituents. A total of 38 phenolics, including flavones, flavonols, flavanones, organic acids, hydroxycinnamic acids and hydroxybenzoic acids, 26 of them were reported for the first time in R. tripartita. The main compounds were apigenin7-O-glucoside, apigenin and p-coumaric acid. The FTIR–ATR analysis results revealed the presence of characteristic functional groups such as − OH, C–O, − C = C and C–H of phenolic compounds, carboxylic acids, carbohydrates, lipophilic components and proteins in R. tripartita fruits. Furthermore, the ethyl acetate fraction showed the highest level of phenolic contents and strong antioxidant activities. The present study recommends R. tripartita fruits as source of natural antioxidants which can be used as bioactive ingredient for functional foods and nutraceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tlili N, Kirkan B, Sarikurkcu C (2019) LC–ESI-MS/MS characterization, antioxidant power and inhibitory effects on α-amylase and tyrosinase of bioactive compounds from hulls of Amygdalus communis: the influence of the extracting solvents. Ind Crops Prod 128:147–152. https://doi.org/10.1016/j.indcrop.2018.11.014

    Article  CAS  Google Scholar 

  2. Romagnolo DF, Selmin OI (2012) Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr 31:206–238

    Article  Google Scholar 

  3. Shakeri A et al (2019) LC–ESI/LTQOrbitrap/MS/MS and GC–MS profiling of Stachys parviflora L. and evaluation of its biological activities. J Pharm Biomed Anal 168:209–216. https://doi.org/10.1016/j.jpba.2019.02.018

    Article  CAS  PubMed  Google Scholar 

  4. Xiang J et al (2019) Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem 275:361–368. https://doi.org/10.1016/j.foodchem.2018.09.120

    Article  CAS  PubMed  Google Scholar 

  5. Tlili N et al (2018) Schinus terebinthifolius vs Schinus molle: a comparative study of the effect of species and location on the phytochemical content of fruits. Ind Crops Prod 122:559–565. https://doi.org/10.1016/j.indcrop.2018.05.080

    Article  CAS  Google Scholar 

  6. Ben Barka Z et al (2018) A combination of NMR and liquid chromatography to characterize the protective effects of Rhus tripartita extracts on ethanol-induced toxicity and inflammation on intestinal cells. J Pharm Biomed Anal 150:347–354

    Article  CAS  Google Scholar 

  7. Tlili N et al (2014) Phytochemicals and antioxidant activities of Rhus tripartitum (Ucria) fruits depending on locality and different stages of maturity. Food Chem 160:98–103. https://doi.org/10.1016/j.foodchem.2014.03.030

    Article  CAS  PubMed  Google Scholar 

  8. Alam P et al (2017) Inter-species comparative antioxidant assay and HPTLC analysis of sakuranetin in the chloroform and ethanol extracts of aerial parts of Rhus retinorrhoea and Rhus tripartita. Pharm Biol 55:1450–1457. https://doi.org/10.1080/13880209.2017.1304428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahjoub MA et al (2010) Anti-inflammatory and antioxidant activities of some extracts and pure natural products isolated from Rhus tripartitum (Ucria). Med Chem Res 19:271–282

    Article  CAS  Google Scholar 

  10. Ben Barka Z et al (2016) Evaluation of the anti-diarrheal activity of the hydromethanolic root extract of Rhus tripartita (Ucria) (Anacardiaceae). Biomed Pharmacother Biomed Pharmacother 83:827–834. https://doi.org/10.1016/j.biopha.2016.07.055

    Article  PubMed  Google Scholar 

  11. Ben Barka Z et al (2017) Protective effects of edible Rhus tripartita (Ucria) stem extract against ethanol-induced gastric ulcer in rats. J Funct Foods 30:260–269. https://doi.org/10.1016/j.jff.2017.01.021

    Article  CAS  Google Scholar 

  12. Mohammed AEI (2015) Phytoconstituents and the study of antioxidant, antimalarial and antimicrobial activities of Rhus tripartita growing in Egypt. J Pharmacogn Phytochem 4: 2762–2781. http://www.phytojournal.com/vol4Issue2/4-3-20.1.html

  13. Shahat AA et al (2016) Treatment with Rhus tripartita extract curtails isoproterenol-elicited cardiotoxicity and oxidative stress in rats. BMC Complement Altern Med 16:351

    Article  Google Scholar 

  14. Shahat AA, Ibrahim AY, Al-Ghamdi AAM, Alsaid MS (2016) Phytochemical investigation of Rhus tripartita and its activity against cyclooxygenases and acetylcholinesterase. Trop J Pharm Res 15:1697–1706. https://doi.org/10.4314/tjpr.v15i8.15

    Article  CAS  Google Scholar 

  15. Tlili N et al (2016) Effects of Rhus tripartitum fruit extract on CCl4-induced hepatotoxicity and cisplatin-induced nephrotoxicity in rats. Can J Physiol Pharmacol 94:801–807

    Article  CAS  Google Scholar 

  16. Tlili N et al (2014) Variation in protein and oil content and fatty acid composition of Rhus tripartitum fruits collected at different maturity stages in different locations. Ind Crops Prod 59:197–201. https://doi.org/10.1016/j.indcrop.2014.05.020

    Article  CAS  Google Scholar 

  17. Pintać D et al (2018) Solvent selection for efficient extraction of bioactive compounds from grape pomace. Ind Crops Prod 111:379–390. https://doi.org/10.1016/j.indcrop.2017.10.038

    Article  CAS  Google Scholar 

  18. Yang J, Ou X, Zhang X, Zhou Z, Ma L (2017) Effect of different solvents on the measurement of phenolics and the antioxidant activity of Mulberry (Morus atropurpurea Roxb.) with accelerated solvent extraction. J Food Sci 82:605–612

    Article  CAS  Google Scholar 

  19. Nakamura M, Ra JH, Jee Y, Kim JS (2017) Impact of different partitioned solvents on chemical composition and bioavailability of Sasa quelpaertensis Nakai leaf extract. J Food Drug Anal 25:316–326. https://doi.org/10.1016/j.jfda.2016.08.006

    Article  CAS  PubMed  Google Scholar 

  20. Ben Miled H et al (2017) Hepatoprotective activity of Rhus oxyacantha root cortex extract against DDT-induced liver injury in rats. Biomed Pharmacother 90:203–215. https://doi.org/10.1016/j.biopha.2017.03.063

    Article  CAS  PubMed  Google Scholar 

  21. Bourgou S et al (2017) LC–ESI–TOF–MS and GC–MS profiling of Artemisia herba-alba and evaluation of its bioactive properties. Food Res Int 99:702–712. https://doi.org/10.1016/j.foodres.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  22. Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  CAS  Google Scholar 

  23. Sun B, Richardo-da-Silvia M, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274

    Article  CAS  Google Scholar 

  24. Fattouch S et al (2007) Antimicrobial activity of Tunisian quince (Cydonia oblonga Miller) pulp and peel polyphenolic extracts. J Agric Food Chem 55:963–969. https://doi.org/10.1021/jf062614e

    Article  CAS  PubMed  Google Scholar 

  25. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/abio.1996.0292

    Article  CAS  Google Scholar 

  26. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application of vitamin E. Anal Biochem 269:337–341

    Article  CAS  Google Scholar 

  27. Tahir HE et al (2017) Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chem 226:202–211. https://doi.org/10.1016/j.foodchem.2017.01.024

    Article  CAS  PubMed  Google Scholar 

  28. Wu Z et al (2016) Comparison between ATR-IR, Raman, concatenated ATR-IR and Raman spectroscopy for the determination of total antioxidant capacity and total phenolic content of Chinese rice wine. Food Chem 194:671–679. https://doi.org/10.1016/j.foodchem.2015.08.071

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Sun S, Lv G, Chan KKC (2006) Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 64:321–326. https://doi.org/10.1016/j.saa.2005.07.026

    Article  CAS  PubMed  Google Scholar 

  30. Spínola V, Pinto J, Castilho PC (2015) Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC–DAD–ESI-MSn and screening for their antioxidant activity. Food Chem 173:14–30. https://doi.org/10.1016/j.foodchem.2014.09.163

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Ma Y, Zhao Y, Hong Y, Cai S, Pang M (2017) Phenolic composition, antioxidant and pancreatic lipase inhibitory activities of Chinese sumac (Rhus chinensis Mill.) fruits extracted by different solvents and interaction between myricetin-3-O-rhamnoside and quercetin-3-O-rhamnoside. Int J Food Sci Technol 1–9

  32. Abu-Reidah IM et al (2015) HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem 166:179–191. https://doi.org/10.1016/j.foodchem.2014.06.011

    Article  CAS  PubMed  Google Scholar 

  33. Miceli N et al (2018) Comparative study of the phenolic profile, antioxidant and antimicrobial activities of leaf extracts of five Juniperus L. (Cupressaceae) taxa growing in Turkey. Nat Prod Res 1–6. https://doi.org/10.1080/14786419.2018.1523162

  34. Qiu DR et al (2016) Chemical constituents from the fruits of Rhus typhina L. and their chemotaxonomic significance. Biochem Syst Ecol 69:261–265. https://doi.org/10.1016/j.bse.2016.10.011

    Article  CAS  Google Scholar 

  35. Sonmezdag AS, Kelebek H, Selli S (2018) Pistachio oil (Pistacia vera L. cv. Uzun): characterization of key odorants in a representative aromatic extract by GC–MS-olfactometry and phenolic profile by LC–ESI-MS/MS. Food Chem 240:24–31. https://doi.org/10.1016/j.foodchem.2017.07.086

    Article  CAS  PubMed  Google Scholar 

  36. Abcha I et al (2019) Ethyl oleate food-grade O/W emulsions loaded with apigenin: insights to their formulation characteristics and physico-chemical stability. Food Res Int 116:953–962. https://doi.org/10.1016/j.foodres.2018.09.032

    Article  CAS  PubMed  Google Scholar 

  37. Madunić J et al (2018) Apigenin: a dietary flavonoid with diverse anticancer properties. Cancer Lett 413:11–22. https://doi.org/10.1016/j.canlet.2017.10.041

    Article  CAS  PubMed  Google Scholar 

  38. Svenningsen AB et al (2006) Biflavones from Rhus species with affinity for the GABAA/benzodiazepine receptor. J Ethnopharmacol 103:276–280. https://doi.org/10.1016/j.jep.2005.08.012

    Article  CAS  PubMed  Google Scholar 

  39. Bursal E et al (2013) Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC–MS/MS. Food Res Int 51:66–74. https://doi.org/10.1016/j.foodres.2012.11.022

    Article  CAS  Google Scholar 

  40. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem 13:572–584. https://doi.org/10.1016/S0955-2863(02)00208-5

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Tunisian Ministry of Higher Education and Scientific Research and Carthage University, and special thanks to Research Laboratories in Science, Applied to Food, Canadian Irradiation Centre, INRS-Institut Armand-Frappier for its financial support for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Lacroix.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and/or animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abcha, I., Criado, P., Salmieri, S. et al. Edible Rhus tripartita fruit as source of health-promoting compounds: characterization of bioactive components and antioxidant properties. Eur Food Res Technol 245, 2641–2654 (2019). https://doi.org/10.1007/s00217-019-03374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-019-03374-1

Keywords

Navigation