Ersoy N, Bagci Y, Gok V (2011) Antioxidant properties of 12 cornelian cherry fruit types (Cornus mas L.) selected from Turkey. Sci Res Essays 6:98–102. https://doi.org/10.5897/SRE10.740
CAS
Article
Google Scholar
Rop O, Mlcek J, Kramarova D, Jurikova T (2010) Selected cultivars of cornelian cherry (Cornus mas L.) as a new food source for human nutrition. Afr J Biotechnol 9:1205–1210. https://doi.org/10.5897/AJB10.1722
CAS
Article
Google Scholar
Yilmaz KU, Ercisli S, Zengin Y, Sengul M, Kafkas EY (2009) Preliminary characterisation of cornelian cherry (Cornus mas L.) genotypes for their physico-chemical properties. Food Chem 114:408–412. https://doi.org/10.1016/j.foodchem.2008.09.055
CAS
Article
Google Scholar
Milenkovic-Andjelkovic A, Andjelkovic M, Radovanovic A, Radovanovic B, Nikolic V (2015) Phenol composition, DPPH radical scavenging and antimicrobial activity of cornelian cherry (Cornus mas) fruit and leaf extracts. Hem Ind 69:331–337. https://doi.org/10.2298/HEMIND140216046M
Article
Google Scholar
Mamedov N, Craker LE (2004) Cornelian cherry: a prospective source for phytomedicine. Acta Hortic 629:83–86. https://doi.org/10.17660/actahortic.2004.629.10
CAS
Article
Google Scholar
Klimienko S (2004) The cornelian cherry (Cornus mas L.): collection, preservation, and utilizationof genetic resources. J Fruit Ornam Plant Res 12:93–98
Google Scholar
Gunduz K, Saracoglu O, Ozgen M, Serce S (2013) Antioxidant, physical and chemical characteristics of cornelian cherry fruits (Cornus mas L.) at different stages of ripeness. Acta Sci Pol Hortorum Cultus 12:12
Google Scholar
Sozański T, Kucharska AZ, Rapak A, Szumny D, Trocha M, Merwid-Ląd A, Dzimira S, Piasecki T, Piórecki N, Magdalan J, Szeląg A (2016) Iridoid–loganic acid versus anthocyanins from the Cornus mas fruits (cornelian cherry): common and different effects on diet-induced atherosclerosis, PPARs expression and inflammation. Atherosclerosis 254:151–160. https://doi.org/10.1016/j.atherosclerosis.2016.10.001
CAS
Article
PubMed
Google Scholar
De Biaggi M, Donno D, Mellano MG, Riondato I, Rakotoniaina EN, Beccaro GL (2018) Cornus mas (L.) fruit as a potential source of natural health-promoting compounds: physico-chemical characterisation of bioactive components. Plant Foods Hum Nutr 73:89–94. https://doi.org/10.1007/s11130-018-0663-4
CAS
Article
PubMed
Google Scholar
Cornescu F-C, Cosmulescu SN (2017) Morphological and biochemical characteristics of fruits of different cornelian cherry (Cornus mas L.) genotypes from spontaneous flora. Not Sci Biol 9:577. https://doi.org/10.15835/nsb9410161
CAS
Article
Google Scholar
Kucharska AZ, Piórecki N, Sokół-Łętowska A, Żarowska B (2011) Characteristics of chemical composition and antioxidant properties of cornelian cherry fruit fermented in brine. Zesz Probl Postępów Nauk Rol 566:125–133
Google Scholar
Moldovan B, Filip A, Clichici S, Suharoschi R, Bolfa P, David L (2016) Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. J Funct Foods 26:77–87. https://doi.org/10.1016/j.jff.2016.07.004
CAS
Article
Google Scholar
Dokhanieh AY, Aghdam MS, Fard JR, Hassanpour H (2013) Postharvest salicylic acid treatment enhances antioxidant potential of cornelian cherry fruit. Sci Hortic (Amsterdam) 154:31–36. https://doi.org/10.1016/j.scienta.2013.01.025
CAS
Article
Google Scholar
Badalica-Petrescu M, Dragan S, Ranga F, Fetea F, Socaciu C (2014) Comparative HPLC–DAD–ESI(+)MS fingerprint and quantification of phenolic and flavonoid composition of aqueous leaf extracts of Cornus mas and Crataegus monogyna, in relation to their cardiotonic potential. Not Bot Horti Agrobot Cluj-Napoca 42:9–18. https://doi.org/10.15835/nbha4219270
CAS
Article
Google Scholar
Kucharska AZ, Sokół-Łętowska A, Piórecki N (2011) Morphological, physical & chemical, and antioxidant profiles of polish varieties of cornelian cherry fruit (Cornus mas L.). Żywność Nauk Technol Jakość 3:78–89
Google Scholar
Sozański T, Kucharska AZ, Szumny D, Magdalan J, Merwid-Ląd A, Nowak B, Piórecki N, Dzimira S, Jodkowska A, Szeląg A, Trocha M (2017) Cornelian cherry consumption increases the l-arginine/ADMA ratio, lowers ADMA and SDMA levels in the plasma, and enhances the aorta glutathione level in rabbits fed a high-cholesterol diet. J Funct Foods 34:189–196. https://doi.org/10.1016/j.jff.2017.04.028
CAS
Article
Google Scholar
Sozański T, Kucharska AZ, Szumny A, Magdalan J, Bielska K, Merwid-Ląd A, Woźniak A, Dzimira S, Piórecki N, Trocha M (2014) The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPARα activation in hypercholesterolemic rabbits. Phytomedicine 21:1774–1784. https://doi.org/10.1016/j.phymed.2014.09.005
CAS
Article
PubMed
Google Scholar
Francik R, Kryczyk J, Kros̈niak M, Berköz M M, Sanocka I, Francik S (2014) The neuroprotective effect of Cornus mas on brain tissue of wistar rats. Sci World J. https://doi.org/10.1155/2014/847368
Article
Google Scholar
Topdaş EF, İçeriği CV, Özellikleri D (2017) The antioxidant activity, vitamin C contents, physical, chemical and sensory properties of ice cream supplemented with cornelian cherry (Cornus mas L.) Paste Kızılcık (Cornus mas L.) Ezmesi İlaveli Dondurmanın Antioksidan. Kafkas Univ Vet Fakulltesi Derg 23:691–697. https://doi.org/10.9775/kvfd.2016.17298
Article
Google Scholar
Nawirska-Olszańska A, Kucharska A, Sokół-Łętowska A, Biesiada A (2010) Quality assessment of pumpkin jams enriched with japanese quince, cornelian cherry and strawberries. Zywn Nauk Technol Jakosc 1:40–48
Google Scholar
Dokoupil L, Řezníček V (2012) Production and use of the Cornelian cherry—Cornus mas L. Acta Univ Agric Silvic Mendelianae Brun 60:49–58. https://doi.org/10.11118/actaun201260080049
Article
Google Scholar
World Health Organisation (2012) Guideline: potassium intake for adults and children. World Health Organisation, Geneva
Google Scholar
Gozlekci S, Esringu A, Ercisli S, Eyduran SP, Akin M, Bozovic D, Sagbas HI (2017) Mineral content of cornelian cherry (Cornus mas L.) fruits. Oxid Commun 40:301–308
CAS
Google Scholar
Krośniak M, Gąstoł M, Szałkowski M, Zagrodzki P, Derwisz M (2010) Cornelian cherry (Cornus mas L.) juices as a source of minerals in human diet. J Toxicol Environ Heal Part A 73:1155–1158. https://doi.org/10.1080/15287394.2010.491408
CAS
Article
Google Scholar
Rosu C, Zenovia O, Truta E, Todirascu-Ciornea E, Manzu C, Zamfirache M (2011) Nutritional value of Rosa spp. L. and Cornus mas L. fruits, as affected by storage conditions. Analele Stiint ale Univ „Alexandru Ioan Cuza” Sect Genet si Biol Mol 12:147–155
CAS
Google Scholar
Polatoğlu B, Beşe AV (2017) Sun drying of cornelian Cherry fruits (Cornus mas L.) sun drying of cornelian cherry fruits (Cornus mas L.). Erzincan Univ J Sci Technol 10:68–77. https://doi.org/10.18185/erzifbed.289008
Article
Google Scholar
Vidrih R, Čejić Ž, Hribar J (2012) Content of certain food components in flesh and stones of the cornelian cherry (Cornus mas L.) genotypes. Croat J Food Sci Technol 4:64–70
Google Scholar
Ercisli S, Yilmaz SO, Gadze J, Hadziabulic S, Aliman J (2011) Some fruit characteristics of cornelian cherries (Cornus mas L.). Not Bot Horti Agrobot Cluj-Napoca 39:255–259. https://doi.org/10.15835/nbha3915875
CAS
Article
Google Scholar
Sengul M, Eser Z, Ercisli S (2014) Chemical properties and antioxidant capacity of cornelian cherry genotypes in Coruh Valley of Turkey. Acta Sci Pol Hortorum Cultus 13:73–82
Google Scholar
Bijelić SM, Golosin BR, Ninić Todorović JI, Cerović SB, Popović BM (2011) Physicochemical fruit characteristics of cornelian cherry (Cornusmas L.) genotypes from Serbia. HortScience 46:849–853
Article
Google Scholar
Tarko T, Duda-Chodak A, Satora P, Sroka P, Pogoń P, Machalica J (2014) Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J Food Sci Technol 51:3934–3941. https://doi.org/10.1007/s13197-013-0963-5
CAS
Article
PubMed
Google Scholar
Nawirska-Olszańska A, Kucharska AZ, Sokół-Łętowska A (2010) Frakcje włókna pokarmowego w owocach derenia właściwego (Cornus mas L.). Żywność Nauk Technol Jakość 2:95–103
Google Scholar
Ercisli S, Orhan E, Esitken A, Yildirim N, Agar G (2008) Relationships among some cornelian cherry genotypes (Cornus mas L.) based on RAPD analysis. Genet Resour Crop Evol 55:613–618. https://doi.org/10.1007/s10722-007-9266-x
CAS
Article
Google Scholar
Czerwińska ME, Melzig MF (2018) Officinalis—analogies and differences of two medicinal plants traditionally used. Front Pharmacol 9:1–28. https://doi.org/10.3389/fphar.2018.00894
CAS
Article
Google Scholar
Leja M, Mareczek A, Nanaszko B (2007) Antioxidant properties of fruits of certain wild tree and bush species. Rocz Akad Rol w Pozn 383:327–331
Google Scholar
Cosmulescu SN, Trandafir I, Cornescu F (2018) Antioxidant capacity, total phenols, total flavonoids and colour component of cornelian cherry (Cornus mas L.) wild genotypes. Not Bot Horti Agrobot Cluj-Napoca 47:390. https://doi.org/10.15835/nbha47111375
CAS
Article
Google Scholar
Demir F, Kalyoncu IH (2003) Some nutritional, pomological and physical properties of Cornelian cherry (Cornus mas L.). J Food Eng 60:335–341. https://doi.org/10.1016/S0260-8774(03)00056-6
Article
Google Scholar
Adamenko K, Kawa-Rygielska J, Kucharska A, Piórecki N (2018) Characteristics of biologically active compounds in Cornelian cherry meads. Molecules 23:2024. https://doi.org/10.3390/molecules23082024
CAS
Article
PubMed Central
Google Scholar
Choi HG, Moon BY, Kang NJ, Kwon JK, Bekhzod K, Park KS, Lee SY (2014) Yield loss and quality degradation of strawberry fruits cultivated under the deficient insolation conditions by shading. Hortic Environ Biotechnol 55:263–270. https://doi.org/10.1007/s13580-014-0039-0
CAS
Article
Google Scholar
Mendez-Costabel MP, Wilkinson KL, Bastian SEP, Jordans C, McCarthy M, Ford CM, Dokoozlian N (2014) Effect of winter rainfall on yield components and fruit green aromas of Vitis vinifera L. cv. Merlot in California. Aust J Grape Wine Res 20:100–110. https://doi.org/10.1111/ajgw.12060
CAS
Article
Google Scholar
Pawlowska AM, Camangi F, Braca A (2010) Quali-quantitative analysis of flavonoids of Cornus mas L. (Cornaceae) fruits. Food Chem 119:1257–1261. https://doi.org/10.1016/j.foodchem.2009.07.063
CAS
Article
Google Scholar
Li D, Zhang X, Xu Y, Li L, Aghdam MS, Luo Z (2019) Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit. Food Chem 289:112–120. https://doi.org/10.1016/j.foodchem.2019.03.042
CAS
Article
PubMed
Google Scholar
Sadilova E, Carle R, Stintzing FC (2007) Thermal degradation of anthocyanins and its impact on color and in wfroantioxidant capacity. Mol Nutr Food Res 51:1461–1471. https://doi.org/10.1002/mnfr.200700179
CAS
Article
PubMed
Google Scholar
Hatier J-HB, Gould KS (2009) Anthocyanin function in vegetative organ. In: Gould K, Davies KM, Winefield C (eds) Anthocyanins biosynthesis, functions, and applications. Springer, Berlin, pp 7–9. https://doi.org/10.1007/978-0387-77335-3_1
Chapter
Google Scholar
Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytopchemistry 64:923–933. https://doi.org/10.1016/S0031-9422(03)00438-2
CAS
Article
Google Scholar
Miguel MG (2011) Anthocyanins: antioxidant and/or anti-inflammatory activities. J Appl Pharm Sci 01:7–15
Google Scholar
Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51:628–633. https://doi.org/10.1021/jf025551i
CAS
Article
PubMed
Google Scholar
Sarma AD, Sharma R (1999) Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry 52:1313–1318. https://doi.org/10.1016/S0031-9422(99)00427-6
CAS
Article
Google Scholar
Mazza G, Kay CD, Cottrell T, Holub BJ (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50:7731–7737. https://doi.org/10.1021/jf020690l
CAS
Article
PubMed
Google Scholar
McDougall GJ, Dobson P, Smith P, Blake A, Stewart D (2005) Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem 53:5896–5904. https://doi.org/10.1021/jf050131p
CAS
Article
PubMed
Google Scholar
Rudrapaul P, Kyriakopoulos AM, De UC, Zoumpourlis V, Dinda B (2015) New flavonoids from the fruits of Cornus mas, Cornaceae. Phytochem Lett 11:292–295. https://doi.org/10.1016/j.phytol.2015.01.011
CAS
Article
Google Scholar
Kucharska AZ, Szumny A, Sokól-Letowska A, Piórecki N, Klymenko SV (2015) Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J Food Compos Anal 40:95–102. https://doi.org/10.1016/j.jfca.2014.12.016
CAS
Article
Google Scholar
Babaloo F, Jamei R (2018) Anthocyanin pigment stability of Cornus mas–Macrocarpa under treatment with pH and some organic acids. Food Sci Nutr 6:168–173. https://doi.org/10.1002/fsn3.542
CAS
Article
PubMed
Google Scholar
Wang DH, Du F, Liu HY, Liang ZS (2011) Drought stress increases iridoid glycosides biosynthesis in the roots of Scrophularia ningpoensis seedlings. J Med Plants Res 4:2691–2699. https://doi.org/10.5897/JMPR09.338
Article
Google Scholar
Dyer L, Bowers M, Dyer LA, Bowers MD (1996) The importance of sequestered iridoid glycosides as a defense against an ant predator. J Chem Ecol 22:1527–1539
CAS
Article
Google Scholar
Deng S, West BJ, Jensen CJ (2013) UPLC-TOF-MS characterization and identification of bioactive iridoids in Cornus mas fruit. J Anal Methods Chem. https://doi.org/10.1155/2013/710972
Article
PubMed
PubMed Central
Google Scholar
Oliveira KRHM, dos Anjos LM, Araújo APS, Luz WL, Kauffmann N, Braga DV, da Conceição Fonseca Passos A, de Moraes SAS, de Jesus Oliveira Batista E, Herculano AM (2019) Ascorbic acid prevents chloroquine-induced toxicity in inner glial cells. Toxicol In Vitro 56:150–155. https://doi.org/10.1016/j.tiv.2019.01.008
CAS
Article
PubMed
Google Scholar
Smirnoff N (2018) Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radic Biol Med 122:116–129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033
CAS
Article
PubMed
PubMed Central
Google Scholar
Pantelidis GE, Vasilakakis M, Manganaris GA, Diamantidis G (2007) Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem 102:777–783. https://doi.org/10.1016/j.foodchem.2006.06.021
CAS
Article
Google Scholar
Kostecka M, Szot I, Czernecki T, Szot P (2017) Vitamin C content of new ecotypes of cornelian cherry (Cornus mas L.) determined by various analytical methods. Acta Sci Pol Hortorum Cultus 16:53–61. https://doi.org/10.24326/asphc.2017.4.6
Article
Google Scholar
Aghdam MS, Dokhanieh AY, Hassanpour H, Rezapour Fard J (2013) Enhancement of antioxidant capacity of cornelian cherry (Cornus mas) fruit by postharvest calcium treatment. Sci Hortic (Amsterdam) 161:160–164. https://doi.org/10.1016/j.scienta.2013.07.006
CAS
Article
Google Scholar
Hassanpour H, Yousef H, Jafar H, Mohammad A (2011) Antioxidant capacity and phytochemical properties of cornelian cherry (Cornus mas L.) genotypes in Iran. Sci Hortic (Amsterdam) 129:459–463. https://doi.org/10.1016/j.scienta.2011.04.017
CAS
Article
Google Scholar
Abbasi NA, Zafar L, Khan H, Qureshi AA (2013) Effects of naphthalene acetic acid and calcium chloride application on nutrient uptake, growth, yield and post harvest performance of tomato fruit. Pak J Bot 45:1581–1587
CAS
Google Scholar
Forman V, Haladová M, Grančai D, Ficková M (2015) Antiproliferative activities of water infusions from leaves of five Cornus L. species. Molecules 20:22546–22552. https://doi.org/10.3390/molecules201219786
CAS
Article
PubMed
PubMed Central
Google Scholar
Forman V, Haladová M, Grančai D (2015) Quantification of some secondary metabolites in selected Cornaceae species/Stanovenie vybraných sekundárnych metabolitov v niektorých druhoch čeľade Cornaceae. Acta Fac Pharm Univ Comenianae 62:8–11. https://doi.org/10.1515/afpuc-2015-0008
CAS
Article
Google Scholar
Celep E, Aydin A, Kirmizibekmez H, Yesilada E (2013) Appraisal of in vitro and in vivo antioxidant activity potential of cornelian cherry leaves. Food Chem Toxicol 62:448–455. https://doi.org/10.1016/j.fct.2013.09.001
CAS
Article
PubMed
Google Scholar
Krivoruchko E (2014) Carboxylic acids from Cornus mas. Chem Nat Compd 50:112–113. https://doi.org/10.1007/s10600-014-0879-y
CAS
Article
Google Scholar
Popović BM, Štajner D, Slavko K, Sandra B (2012) Antioxidant capacity of cornelian cherry (Cornus mas L.)—comparison between permanganate reducing antioxidant capacity and other antioxidant methods. Food Chem 134:734–741. https://doi.org/10.1016/j.foodchem.2012.02.170
CAS
Article
PubMed
Google Scholar
Miláčková I, Meščanová M, Ševčíková V, Mučaji P (2017) Water leaves extracts of Cornus mas and Cornus kousa as aldose reductase inhibitors: the potential therapeutic agents. Chem Pap 71:2335–2341. https://doi.org/10.1007/s11696-017-0227-3
CAS
Article
Google Scholar
Świerczewska A, Buchholz T, Melzig MF, Czerwińska ME (2018) In vitro α-amylase and pancreatic lipase inhibitory activity of Cornus mas L. and Cornus alba L. fruit extracts. J Food Drug Anal. https://doi.org/10.1016/j.jfda.2018.06.005
Article
PubMed
Google Scholar
Asgary S, Rafieian-Kopaei M, Adelnia A, Kazemi S, Shamsi F (2010) Comparing the effects of lovastatin and Cornus mas fruit on fibrinogen level in hypercholesterolic rabbits. ARYA Atheroscler J 6:1–5
Google Scholar
Leskovac A, Joksic G, Jankovic T, Savikin K, Menkovic N (2007) Radioprotective properties of the phytochemically characterized extracts of Crataegus monogyna, Cornus mas and Gentianella austriaca on human lymphocytes in vitro. Planta Med 73:1169–1175. https://doi.org/10.1055/s-2007-981586
CAS
Article
PubMed
Google Scholar
Asgary S, Kelishadi R, Rafieian-Kopaei M, Najafi S, Najafi M, Sahebkar A (2013) Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr Cardiol 34:1729–1735. https://doi.org/10.1007/s00246-013-0693-5
Article
PubMed
Google Scholar
Rosenson RS, Wright RS, Farkouh M, Plutzky J (2012) Modulating peroxisome proliferator-activated receptors for therapeutic benefit? Biology, clinical experience, and future prospects. Am Heart J 164:672–680. https://doi.org/10.1016/j.ahj.2012.06.023
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science (80-) 322:583–586. https://doi.org/10.1126/science.1156232
CAS
Article
Google Scholar
Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG (2006) Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). J Agric Food Chem 54:243–248. https://doi.org/10.1021/jf0520342
CAS
Article
PubMed
Google Scholar
Choi YH, Jin GY, Li GZ, Yan GH (2011) Cornuside suppresses lipopolysaccharide-induced inflammatory mediators by inhibiting nuclear factor-kappa B activation in RAW 264.7 macrophages. Biol Pharm Bull 34:959–966. https://doi.org/10.1248/bpb.34.959
CAS
Article
PubMed
Google Scholar
Jiang W-L, Chen X-G, Zhu H-B, Tian J-W (2009) Effect of cornuside on experimental sepsis. Planta Med 75:614–619. https://doi.org/10.1055/s-0029-1185383
CAS
Article
PubMed
Google Scholar
Piekarska J, Szczypka M, Kucharska AZ, Gorczykowski M (2018) Effects of iridoid-anthocyanin extract of Cornus mas L. on hematological parameters, population and proliferation of lymphocytes during experimental infection of mice with Trichinella spiralis. Exp Parasitol 188:58–64. https://doi.org/10.1016/j.exppara.2018.03.012
CAS
Article
PubMed
Google Scholar
Szumny D, Sozański T, Kucharska AZ, Dziewiszek W, Piórecki N, Magdalan J, Chlebda-Sieragowska E, Kupczynski R, Szeląg A, Szumny A (2015) Application of cornelian cherry iridoid-polyphenolic fraction and loganic acid to reduce intraocular pressure. Evid Based Complement Altern Med 2015:1–8. https://doi.org/10.1155/2015/939402
Article
Google Scholar
Alavian SM, Banihabib N, Haghi ME, Panahi F (2014) Protective effect of Cornus mas fruits extract on serum biomarkers in CCl4-induced hepatotoxicity in male rats. Hepat Mon. https://doi.org/10.5812/hepatmon.10330
Article
PubMed
PubMed Central
Google Scholar
Šavikin K, Zdunić G, Janković T, Stanojković T, Juranić Z, Menković N (2009) In vitro cytotoxic and antioxidative activity of Cornus mas and Cotinus coggygria. Nat Prod Res 23:1731–1739. https://doi.org/10.1080/14786410802267650
CAS
Article
PubMed
Google Scholar
Yousefi B, Abasi M, Abbasi MM, Jahanban-Esfahlan R (2015) Anti-proliferative properties of Cornus mass fruit in different human cancer cells. Asian Pac J Cancer Prev 16:5727–5731. https://doi.org/10.7314/APJCP.2015.16.14.5727
Article
PubMed
Google Scholar
Da Ronch F, Caudullo G, Houston Durrant T, de Rigo D (2016) Cornus mas in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (eds) European atlas of forest tree species. Publication Office of the European Union, Luxembourg, pp 82–83
Google Scholar
Yarılgaç T, Kadim H, Ozturk B (2019) Role of maturity stages and modified-atmosphere packaging on the quality attributes of cornelian cherry fruits (Cornus mas L.) throughout shelf life. J Sci Food Agric 99:421–428. https://doi.org/10.1002/jsfa.9203
CAS
Article
PubMed
Google Scholar
Mohebbi S, Mostofi Y, Zamani Z, Najafi F (2015) Influence of modified atmosphere packaging on storability and postharvest quality of Cornelian cherry (Cornus mas L.) fruits. Not Sci Biol 7:116–122. https://doi.org/10.15835/nsb.7.1.9397
CAS
Article
Google Scholar
Tesevic V, Nikicevic N, Milosavljevic S, Bajic D, Vajs V, Vuckovic I, Vujisic L, Djordjevic I, Stankovic M, Velickovic M (2009) Characterization of volatile compounds of “Drenja”, an alcoholic beverage obtained from the fruits of Cornelian cherry. J Serbian Chem Soc 74:117–128. https://doi.org/10.2298/JSC0902117T
CAS
Article
Google Scholar
Sokół-Łętowska A, Kucharska AZ, Wińska K, Szumny A, Nawirska-Olszańska A, Mizgier P, Wyspiańska D (2014) Composition and antioxidant activity of red fruit liqueurs. Food Chem 157:533–539. https://doi.org/10.1016/j.foodchem.2014.02.083
CAS
Article
PubMed
Google Scholar
Dragoni S, Gee J, Bennett R, Valoti M, Sgaragli G (2006) Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro. Br J Pharmacol 147:765–771. https://doi.org/10.1038/sj.bjp.0706662
CAS
Article
PubMed
PubMed Central
Google Scholar
Jakobek L, Matić P (2019) Non-covalent dietary fiber—polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci Technol 83:235–247. https://doi.org/10.1016/j.tifs.2018.11.024
CAS
Article
Google Scholar
Xu L, Cheng J-R, Liu X-M, Zhu M-J (2019) Effect of microencapsulated process on stability of mulberry polyphenol and oxidation property of dried minced pork slices during heat processing and storage. LWT 100:62–68. https://doi.org/10.1016/j.lwt.2018.10.025
CAS
Article
Google Scholar
Bohn T, McDougall GJ, Alegría A, Alminger M, Arrigoni E, Aura A-M, Brito C, Cilla A, El SN, Karakaya S, Martínez-Cuesta MC, Santos CN (2015) Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites—a position paper focusing on carotenoids and polyphenols. Mol Nutr Food Res 59:1307–1323. https://doi.org/10.1002/mnfr.201400745
CAS
Article
PubMed
PubMed Central
Google Scholar
Howard LR, Castrodale C, Brownmiller C, Mauromoustakos A (2010) Jam processing and storage effects on blueberry polyphenolics and antioxidant capacity. J Agric Food Chem 58:4022–4029. https://doi.org/10.1021/jf902850h
CAS
Article
PubMed
Google Scholar
Schmidt BM, Erdman JW, Lila MA (2006) Effects of food processing on blueberry antiproliferation and antioxidant activity. J Food Sci 70:s389–s394. https://doi.org/10.1111/j.1365-2621.2005.tb11461.x
Article
Google Scholar
Palonen P, Weber C (2019) Horticulturae Fruit color stability, anthocyanin content, and shelf life were not correlated with ethylene production rate in five primocane raspberry genotypes. Sci Hortic (Amsterdam) 247:9–16. https://doi.org/10.1016/j.scienta.2018.11.088
CAS
Article
Google Scholar
Barat A, Ozcan T (2018) Growth of probiotic bacteria and characteristics of fermented milk containing fruit matrices. Int J Dairy Technol 71:120–129. https://doi.org/10.1111/1471-0307.12391
CAS
Article
Google Scholar
Czyżowska A, Kucharska AZ, Nowak A, Sokół-Łętowska A, Motyl I, Piórecki N (2017) Suitability of the probiotic lactic acid bacteria strains as the starter cultures in unripe cornelian cherry (Cornus mas L.) fermentation. J Food Sci Technol 54:2936–2946. https://doi.org/10.1007/s13197-017-2732-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Ivanova M, Petkova N, Balabanova T, Vlaseva R (2018) Food design of dairy desserts with encapsulated cornelian cherry, chokeberry and blackberry juices. Ann Univ Dunarea Jos Galati Fascicle VI Food Technol 42:137–146
Google Scholar
Kucharska AZ, Kowalczyk K, Nawirska-Olszańska A, Sokół-Łętowska A (2010) Effect on cokeberry, strawberry, and raspberry added to Cornelian cherry puree on its physical and chemical composition. Żywność Nauk Technol Jakość 4:95–106
Google Scholar
Tresserra-Rimbau A, Lamuela-Raventos RM, Moreno JJ (2018) Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem Pharmacol 156:186–195. https://doi.org/10.1016/j.bcp.2018.07.050
CAS
Article
PubMed
Google Scholar
Cerit İ, Şenkaya S, Tulukoğlu B, Kurtuluş M, Seçilmişoğlu ÜR, Demirkol O (2016) Enrichemnt of functional properties of white chocolates with cornelian cherry, spinach and pollen powders. Gida J Food 41:311–316. https://doi.org/10.15237/gida.GD16029
Article
Google Scholar
Salejda AM, Kucharska AZ, Krasnowska G (2018) Effect of Cornelian cherry (Cornus mas L.) juice on selected quality properties of beef burgers. J Food Qual 2018:1–8. https://doi.org/10.1155/2018/1563651
CAS
Article
Google Scholar
Cakmakci S, Tosun M (2010) Characteristics of mulberry pekmez with cornelian cherry. Int J Food Prop 13:713–722. https://doi.org/10.1080/10942910902804459
CAS
Article
Google Scholar
Kawa-Rygielska J, Adamenko K, Kucharska AZ, Piórecki N (2018) Bioactive compounds in cornelian cherry vinegars. Molecules. https://doi.org/10.3390/molecules23020379
Article
PubMed
PubMed Central
Google Scholar
Jaćimović V, Božović Ð (2017) Evaluation of cornelian cherry (Cornus mas L.) varieties and selections under the conditions of Gornje Polimlje region. Voćarstvo 51:81–86
Google Scholar
Zhang Y, Zhang Y (2007) Study on reduction of acrylamide in fried bread sticks by addition of antioxidant of bamboo leaves and extract of green tea. Asia Pac J Clin Nutr 16:131–136. https://doi.org/10.6133/apjcn.2007.16.s1.25
CAS
Article
PubMed
Google Scholar
Świeca M, Sęczyk Ł, Gawlik-Dziki U, Dziki D (2014) Bread enriched with quinoa leaves—the influence of protein–phenolics interactions on the nutritional and antioxidant quality. Food Chem 162:54–62. https://doi.org/10.1016/j.foodchem.2014.04.044
CAS
Article
PubMed
Google Scholar
Kolniak-Ostek J, Oszmiański J, Wojdyło A (2013) Effect of apple leaves addition on physicochemical properties of cloudy beverages. Ind Crops Prod 44:413–420. https://doi.org/10.1016/j.indcrop.2012.12.003
CAS
Article
Google Scholar
Vanajakshi V, Vijayendra SVN, Varadaraj MC, Venkateswaran G, Agrawal R (2015) Optimization of a probiotic beverage based on Moringa leaves and beetroot. LWT Food Sci Technol 63:1268–1273. https://doi.org/10.1016/j.lwt.2015.04.023
CAS
Article
Google Scholar
Combet E, Gray SR (2019) Nutrient–nutrient interactions: competition, bioavailability, mechanism and function in health and diseases. Proc Nutr Soc 78:1–3. https://doi.org/10.1017/S0029665118002732
Article
PubMed
Google Scholar
Muros JJ, Sánchez-Muñoz C, Hoyos J, Zabala M (2019) Nutritional intake and body composition changes in a UCI World Tour cycling team during the Tour of Spain. Eur J Sport Sci 19:86–94. https://doi.org/10.1080/17461391.2018.1497088
Article
PubMed
Google Scholar
Sanchez A, Mejia A, Sanchez J, Runte E, Brown-Fraser S, Bivens RL (2019) Diets with customary levels of fat from plant origin may reverse coronary artery disease. Med Hypotheses 122:103–105. https://doi.org/10.1016/j.mehy.2018.10.027
CAS
Article
PubMed
Google Scholar
Rezaeiamiri E, Bahramsoltani R, Rahimi R (2019) Plant-derived natural agents as dietary supplements for the regulation of glycosylated hemoglobin: a review of clinical trials. Clin Nutr. https://doi.org/10.1016/j.clnu.2019.02.006
Article
PubMed
Google Scholar
Liu B, Yan T, Xiao J, Wang X (2018) α-Glucosidase inhibitors and antioxidants from root bark of Morus alba. Chin Herb Med 10:331–335. https://doi.org/10.1016/j.chmed.2018.02.004
Article
Google Scholar
Yimam M, Jiao P, Hong M, Brownell L, Kim Hyun-Jin, Lee Y-C, Jia Q (2018) Repeated dose 28-day oral toxicity study of a botanical composition composed of Morus alba and Acacia catechu in rats. Regul Toxicol Pharmacol 94:115–123. https://doi.org/10.1016/j.yrtph.2018.01.024
CAS
Article
PubMed
Google Scholar
Przeor M, Flaczyk E (2016) Antioxidant properties of paratha type flat bread enriched with white mulberry leaf extract. Indian J Tradit Knowl 15:237–244
Google Scholar
Kobus-Cisowska J, Flaczyk E, Rudzińska M, Kmiecik D (2014) Antioxidant properties of extracts from Ginkgo biloba leaves in meatballs. Meat Sci 97:174–180. https://doi.org/10.1016/j.meatsci.2014.01.011
CAS
Article
PubMed
Google Scholar
Walkowiak A, Ledziński Ł, Zapadka M, Kupcewicz B (2019) Detection of adulterants in dietary supplements with Ginkgo biloba extract by attenuated total reflectance Fourier transform infrared spectroscopy and multivariate methods PLS-DA and PCA. Spectrochim Acta Part A Mol Biomol Spectrosc 208:222–228. https://doi.org/10.1016/j.saa.2018.10.008
CAS
Article
Google Scholar
Dorman DC, Côté LM, Buck WB (1992) Effects of an extract of Gingko biloba on bromethalin-induced cerebral lipid peroxidation and edema in rats. Am J Vet Res 53:138–142
CAS
PubMed
Google Scholar
Spencer JPE (2010) The impact of fruit flavonoids on memory and cognition. Br J Nutr 104:S40–S47. https://doi.org/10.1017/S0007114510003934
CAS
Article
PubMed
Google Scholar
Choudhary D, Bhattacharyya S, Bose S (2017) Efficacy and safety of Ashwagandha (Withania somnifera (L.) Dunal) root extract in improving memory and cognitive functions. J Diet Suppl 14:599–612
Article
Google Scholar