Skip to main content
Log in

Test of four generations of Saccharomyces cerevisiae concerning their effect on antioxidant phenolic compounds in wine

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The aim of this research was to study the behaviour of 70 different Saccharomyces cerevisiae strains on the antioxidant compounds level in wines by RP-HPLC/DAD. Micro-winemaking was carried out in Cabernet Sauvignon grape must testing eight Italian wild strains, 12 derived monosporal cultures, 15 hybrids obtained by monosporal spore-to-spore conjugation, 34 monosporal cultures derived from the hybrids, and Zymaflore F15 as control strain. At the end of the winemaking, the wines show significant differences concerning their antioxidant levels in relation to the strain used. Catechin and epicatechin were the principal antioxidant compounds for all the samples. In particular, the catechin content varied from 0 to 79.53 mg/L, while epicatechin varied from 0 to 70.51 mg/L. The vanillic acid level varied from 3.10 to 12.71 mg/L. Gallic and caffeic acids varied, respectively, from 2.54 to 6.77 mg/L and from 0 to 10.63 mg/L. The rutin and quercetin content varied from 0 to 11.77 mg/L and from 0 to 2.09 mg/L, while trans-resveratrol level varied from 0 to 0.85 mg/L. Data validate the main role that wine yeast selection plays to enhance red wine content in antioxidant phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cimino F, Sulfaro V, Trombetta D, Saija A, Tomaino A (2007) Radical scavenging capacity of several Italian red wines. Food Chem 103:75–81

    Article  CAS  Google Scholar 

  2. Atanacković M, Petrović A, Jović S, Gojković-Bukarica L, Bursać M, Cvejić J (2012) Influence of winemaking techniques on the resveratrol content, total phenolic content and antioxidant potential of red wines. Food Chem 131:513–518

    Article  Google Scholar 

  3. Frémont L (2000) Biological effects of resveratrol. Life Sci 66:663–673

    Article  Google Scholar 

  4. Agrawal P, Halaweish F, Dwivedi C (2007) Antioxidant effects and drug interactions of resveratrol present in wine. J Wine Res 8:59–71

    Article  Google Scholar 

  5. Dawn B (2006) Resveratrol: ready for prime time? J Mol Cell Cardiol 42:484–486

    Article  Google Scholar 

  6. Goswami SK, Das DK (2009) Resveratrol and chemoprevention. Cancer Lett 284:1–6

    Article  CAS  Google Scholar 

  7. Szkudelska K, Szkudelski T (2010) Resveratrol, obesity and diabetes. Eur J Pharmacol 635:1–8

    Article  CAS  Google Scholar 

  8. Roggero J-P, Archier P (1994) Quantitative determination of resveratrol and of one of its glycosides in wines. Sci Aliment 14:99–107

    CAS  Google Scholar 

  9. Kolouchová-Hanzlíková I, Melzoch K, Fili V, Smidrkal J (2004) Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wines. Food Chem 87:151–158

    Article  Google Scholar 

  10. Montsko G, Ohmacht R, Mark L (2010) Trans-resveratrol and trans-piceid content of Hungarian wines. Chromat 71:121–124

    Article  Google Scholar 

  11. Giuffrè A M (2013) High performance liquid chromatography-diode array detector (HPLC-DAD) detection of trans-resveratrol: evolution during ripening in grape berry skins. Afr J Agr Res 8:224–229

    Google Scholar 

  12. Jeandet P, Bessis R, Maume BF, Meunier P, Peyron D, Trollat P (1995) Effect of oenological practices on the resveratrol isomer content of wine. J Agric Food Chem 43:316–319

    Article  CAS  Google Scholar 

  13. Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O (2011) Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metab Eng 13:455–463

    Article  CAS  Google Scholar 

  14. Gao J, Xi Z, Zhang J, Guo Z, Chen T, Fang Y (2012) Influence of fermentation method on phenolics, antioxidant capacity and volatiles in blackberry wines. Anal Lett 17:2603–2622

    Article  Google Scholar 

  15. Coletta A, Berto S, Crupi P, Cravero MC, Tamborra P, Antonacci D (2014) Effect of viticulture practices on concentration of polyphenolic compounds and total antioxidant capacity of Southern Italy red wines. Food Chem 152:467–474

    Article  CAS  Google Scholar 

  16. Orser RE, Yang HY (1966) Gas–liquid chromatographic analysis of blackberry wine extracts fermented by different yeast strains. Am J Enol Viticult 2:106–111

    Google Scholar 

  17. Hernández LF, Espinosa J-C, Fernández-González M, Briones A (2003) ß-glucosidase activity in a Saccharomyces cerevisiae wine strain. Int J Food Microbiol 80:171–176

    Article  Google Scholar 

  18. Morata A, Gómez-Cordovés MC, Colomo B, Suárez JA (2003) Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: relationship with Visitin A and B formation in red wines. J Agric Food Chem 51:7402–7409

    Article  CAS  Google Scholar 

  19. Loira I, Vejarano R, Morata A, Ricardo-da-Silva JM, Laureano O, González MC (2013) Effect of Saccharomyces strains on the quality of red wines aged on lees. Food Chem 139:1044–1051

    Article  CAS  Google Scholar 

  20. Morata A, Gómez-Cordovés MC, Colomo B, Suárez JA (2005) Cell wall anthocyanin adsorption by different Saccharomyces strains during the fermentation of Vitis vinifera L. cv. Graciano grapes. Eur Food Res Technol 220:341–346

    Article  CAS  Google Scholar 

  21. Caridi A (2006) Enological functions of parietal yeast mannoproteins. Anton Leeuw Int J G 89:417–422

    Article  Google Scholar 

  22. Salmon JM (2006) Interactions between yeast, oxygen and polyphenols during alcoholic fermentations: practical implications. LWT-Food Sci Technol 39:959–965

    Article  CAS  Google Scholar 

  23. Caridi A, Sidari R, Solieri L, Cufari A, Giudici P (2007) Wine colour adsorption phenotype: an inheritable quantitative trait loci of yeasts. J Appl Microbiol 103:735–742

    Article  CAS  Google Scholar 

  24. Caridi A, Cufari A, Lovino R, Palumbo R, Tedesco I (2004) Influence of yeast on polyphenol composition of wine. Food Technol. Biotech 42:37–40

    CAS  Google Scholar 

  25. Sidari R, Postorino S, Caparello A, Caridi A (2007) Evolution during wine aging of colour and tannin differences induced by wine starters. Ann Microbiol 57:197–201

    Article  CAS  Google Scholar 

  26. Ivanova-Petropulos V, Ricci A, Nedelkovski D, Dimovska V, Parpinello GP, Versari A (2015) Targeted analysis of bioactive phenolic compounds and antioxidant activity of Macedonian red wines. Food Chem 171:412–420

    Article  CAS  Google Scholar 

  27. Caridi A (2013) Improved screening method for the selection of wine yeasts based on their pigment adsorption activity. Food Technol Biotech 51:137–144

    Google Scholar 

  28. Caridi A, Sidari R, Kraková L, Kuchta T, Pangallo D (2015) Assessment of color adsorption by yeast using Grape Skin agar and impact on red wine color. J Int Sci Vigne Vin 49:195–203

    Google Scholar 

  29. Sidari R, Caridi A, Howell KS (2014) Wild Saccharomyces cerevisiae strains display biofilm-like morphology in contact with polyphenols from grapes and wine. Int J Food Microbiol 189:146–152

    Article  CAS  Google Scholar 

  30. Sidari R, Caridi A (2016) Nutrient depletion modifies cell wall adsorption activity of wine yeast. World J Microb Biot 32:1–7

    Article  CAS  Google Scholar 

  31. Del Barrio-Galán R, Medel-Marabolí M, Peña-Neira A (2015) Effect of different aging techniques on the polysaccharide and phenolic composition and sensorial characteristics of Syrah red wines fermented using different yeast strains. Food Chem 179:116–126

    Article  Google Scholar 

  32. Del Barrio-Galán R, Cáceres-Mella A, Medel-Marabolí M, Peña-Neira A (2015) Effect of selected Saccharomyces cerevisiae yeast strains and different aging techniques on the polysaccharide and polyphenolic composition and sensorial characteristics of Cabernet Sauvignon red wines. J Sci Food Agr 95:2132–2144

    Article  Google Scholar 

  33. Domizio P, Liu Y, Bisson LF, Barile D (2017) Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization. Food Microbiol 61:136–149

    Article  CAS  Google Scholar 

  34. Mekoue Nguela J, Vernhet A, Sieczkowski N, Brillouet JM (2015) Interactions of condensed tannins with Saccharomyces cerevisiae yeast cells and cell walls: tannin location by microscopy. J Agric Food Chem 63:7539–7545

    Article  CAS  Google Scholar 

  35. Mekoue Nguela J, Sieczkowski N, Roi S, Vernhet A (2015) Sorption of grape proanthocyanidins and wine polyphenols by yeasts, inactivated yeasts, and yeast cell walls. J Agric Food Chem 63:660–670

    Article  CAS  Google Scholar 

  36. Degree R. Killer yeasts (1993) In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 243–264

    Google Scholar 

  37. Zironi R, Romano P, Suzzi G, Battistutta F, Comi G (1993) Volatile metabolites produced in wine by mixed and sequential cultures of Hanseniaspora guilliermondii or Kloeckera apiculata and Saccharomyces cerevisiae. Biotechnol Lett 3:235–238

    Article  Google Scholar 

  38. Ciani M, Picciotti G (1995) The growth kinetics and fermentation behaviour of some non-Saccharomyces yeasts associated with winemaking. Biotechnol Lett 17:1247–1250

    Article  CAS  Google Scholar 

  39. Petravić-Tominac V, Mesihović A, Mujadžić S, Lisičar J, Oros D, Velić D, et al (2013) Production of blackberry wine by microfermentation using commercial yeasts Fermol Rouge® and Fermol Mediterranée. Agric Conspec Sci 78:49–55

    Google Scholar 

  40. González-Candelas R, Gil JV, Lamuela-Raventó RM, Ramón D (2000) The use of transgenic yeasts expressing a gene encoding a glycosyl-hydrolase as a tool to increase resveratrol content in wine. Int J Food Microbiol 59:179–183

    Article  Google Scholar 

  41. Becker JVW, Armstrong GO, Van der Merwe MJ, Lambrechts MG, Vivier MA, Pretorius IS (2003) Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Res 4:79–85

    Article  CAS  Google Scholar 

  42. Directive 2001 18/EC of the European Parliament and of the Council of 12 March 2001 on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive, supra note 1, art. 2 (3).

  43. Thornton RJ, Eschenbruch R (1976) Homothallism in wine yeasts. Anton Leeuw 42:503–509

    Article  CAS  Google Scholar 

  44. Zambonelli C (1998) Microbiology and wine biotechnology. Edagricole, Bologna

    Google Scholar 

  45. Boveri S, Rainieri S, Pulvirenti A (2012) Method for the validation of intraspecific crosses of Saccharomyces cerevisiae strains by minisatellite analysis. Can J Microbiol 58:350–358

    Article  CAS  Google Scholar 

  46. Caridi A, De Bruno A, Piscopo A, Poiana M, Sidari R (2015) Study of the inheritability of the yeast trait “interaction with natural antioxidant activity of red wine” in four generations of Saccharomyces cerevisiae and its enhancing by spore clone selection and hybridization. Eur Food Res Technol 240:1059–1063

    Article  CAS  Google Scholar 

  47. Di Stefano R, Cravero MC (1992) The separation of hydroxycinnamates in wine. Sci Aliment 12:139–144

    CAS  Google Scholar 

  48. Giuffrè AM (2013) HPLC-DAD detection of changes in phenol content of red berry skins during grape ripening. Eur Food Res Technol 237:555–564

    Article  Google Scholar 

  49. Fowell RR (1952) Sodium acetate agar as a sporulation medium for yeasts. Nature 170:578

    Article  CAS  Google Scholar 

  50. La Torre GL, Saitta M, Vilasi F, Pellicanò T, Dugo G (2006) Direct determination of phenolic compounds in Sicilian wines by liquid chromatography with PDA and MS detection. Food Chem 94:640–650

    Article  CAS  Google Scholar 

  51. Luchian CE, Cotea VV, Colibaba LC, Zamfir C, Codreanu M, Niculaua M, et al (2015) Influence of nanoporous materials on the chemical composition of Merlot and Cabernet Sauvignon wines. Environ Eng Manag J 14:519–524

    CAS  Google Scholar 

  52. Del Barrio-Galán R, Pérez-Magariño S, Ortega-Heras M (2011) Techniques for improving or replacing ageing on lees of oak aged red wines: the effects on polysaccharides and the phenolic composition. Food Chem 127:528–540

    Article  Google Scholar 

  53. Del Barrio-Galán R, Pérez-Magariño S, Ortega-Heras M (2012) Effect of the aging on lees and other alternative techniques on the low molecular weight phenols of Tempranillo red wine aged in oak barrels. Anal Chim Acta 732:53–63

    Article  Google Scholar 

  54. Odani T, Shimma Y, Wang X (1997) Mannosylphosphate transfer to cell wall mannan is regulated by the transcriptional level of the MNN4 gene in Saccharomyces cerevisiae. FEBS Lett 420:186–190

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by POR CALABRIA FESR 2007/2013—ASSE I—Obiettivo Specifico 1.1—Obiettivo Operativo 1.1.1—Linea di Intervento 1.1.1.2 Innovazione di processo e nuovi prodotti per la valorizzazione dei vini e passiti da cv autoctone—ENOTRIA TELLUS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Caridi.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caridi, A., Sidari, R., Giuffrè, A.M. et al. Test of four generations of Saccharomyces cerevisiae concerning their effect on antioxidant phenolic compounds in wine. Eur Food Res Technol 243, 1287–1294 (2017). https://doi.org/10.1007/s00217-016-2840-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2840-8

Keywords

Navigation