Skip to main content
Log in

Oxygen exposure of tannins-rich red wines during bottle aging. Influence on phenolics and color, astringency markers and sensory attributes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Three Southern Italy red wines Aglianico, Casavecchia and Pallagrello with high content of total tannins but different initial anthocyanins composition were aged in bottle for 15 months with closures allowing different degrees of wine oxygen exposure. In all wines oxygen exposure resulted in a progressive decrease in monomeric anthocyanins, vanillin reactive flavans and content of tannins reactive toward salivary proteins. In contrast, no significant decrease in color intensity was detected due to the formation of polymeric pigments. For all wines, the closure with the highest oxygen ingress determined a higher intensity of red fruit notes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ritchey JG, Waterhouse AL (1999) A standard red wine: monomeric phenolic analysis of commercial Cabernet Sauvignon wines. Am J Enol Vitic 50(1):91–100

    CAS  Google Scholar 

  2. Fanzone M, Peña-Neira A, Gil M, Jofré V, Assof M, Zamora F (2012) Impact of phenolic and polysaccharidic composition on commercial value of Argentinean Malbec and Cabernet Sauvignon wines. Food Res Int 45(1):402–414

    Article  CAS  Google Scholar 

  3. Arnold RA, Noble AC, Singleton VL (1980) Bitterness and astringency of phenolic fractions in wine. J Agric Food Chem 28(3):675–678

    Article  CAS  Google Scholar 

  4. Robichaud JL, Noble AC (1990) Astringency and bitterness of selected phenolics in wine. J Sci Food Agric 53(3):343–353

    Article  CAS  Google Scholar 

  5. Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am J Enol Vitic 52(2):67–87

    CAS  Google Scholar 

  6. Atanasova V, Fulcrand H, Cheynier V, Moutounet M (2002) Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Anal Chim Acta 458(1):15–27

    Article  CAS  Google Scholar 

  7. Gambuti A, Rinaldi A, Ugliano M, Moio L (2013) Evolution of phenolic compounds and astringency during aging of red wine: effect of oxygen exposure before and after bottling. J Agric Food Chem 61(8):1618–1627

    Article  CAS  Google Scholar 

  8. Nguyen DD, Nicolau L, Dykes SI, Kilmartin PA (2010) Influence of microoxygenation on reductive sulfur off-odors and color development in a Cabernet Sauvignon wine. Am J Enol Vitic 61(4):457–464

    Article  Google Scholar 

  9. Caillé S, Samson A, Wirth J, Diéval JB, Vidal S, Cheynier V (2010) Sensory characteristics changes of red Grenache wines submitted to different oxygen exposures pre and post bottling. Anal Chim Acta 660(1):35–42

    Article  Google Scholar 

  10. Wirth J, Morel-Salmi C, Souquet JM, Dieval JB, Aagaard O, Vidal S, Cheynier V (2010) The impact of oxygen exposure before and after bottling on the polyphenolic composition of red wines. Food Chem 123(1):107–116

    Article  CAS  Google Scholar 

  11. Wirth J, Caillé S, Souquet JM, Samson A, Dieval JB, Vidal S, Cheynier V (2012) Impact of post-bottling oxygen exposure on the sensory characteristics and phenolic composition of Grenache rosé wines. Food Chem 132(4):1861–1871

    Article  CAS  Google Scholar 

  12. Han G, Ugliano M, Currie B, Vidal S, Diéval JB, Waterhouse AL (2015) Influence of closure, phenolic levels and microoxygenation on Cabernet Sauvignon wine composition after 5 years’ bottle storage. J Sci Food Agric 95(1):36–43

    Article  CAS  Google Scholar 

  13. Ugliano M, Dieval JB, Siebert TE, Kwiatkowski M, Aagaard O, Vidal S, Waters EJ (2012) Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre-and postbottling controlled oxygen exposure. J Agric Food Chem 60(35):8561–8570

    Article  CAS  Google Scholar 

  14. Ugliano M (2013) Oxygen contribution to wine aroma evolution during bottle aging. J Agric Food Chem 61(26):6125–6136

    Article  CAS  Google Scholar 

  15. Cano-López M, Pardo-Mínguez F, Schmauch G, Saucier C, Teissedre PL, López-Roca JM, Gómez-Plaza E (2008) Effect of micro-oxygenation on color and anthocyanin-related compounds of wines with different phenolic contents. J Agric Food Chem 56(14):5932–5941

    Article  Google Scholar 

  16. Kwiatkowski MJ, Skouroumounis GK, Lattey KA, Waters EJ (2007) The impact of closures, including screw cap with three different headspace volumes, on the composition, colour and sensory properties of a Cabernet Sauvignon wine during two years’ storage. Aust J Grape and Wine Res 13(2):81–94

    Article  CAS  Google Scholar 

  17. Chrysochou P, Krystallis A, Mocanu A, Leigh Lewis R (2012) Generation Y preferences for wine: an exploratory study of the US market applying the best-worst scaling. Br Food J 114(4):516–528

    Article  Google Scholar 

  18. Rinaldi A, Jourdes M, Teissedre PL, Moio L (2014) A preliminary characterization of Aglianico (Vitis vinifera L. cv.) grape proanthocyanidins and evaluation of their reactivity towards salivary proteins. F Chem 164:142–149

    Article  CAS  Google Scholar 

  19. Masi E, Vignani R, Di Giovannantonio A, Mancuso S, Boselli M (2001) Ampelographic and cultural characterisation of the Casavecchia variety. Adv Hortic Sci 15(1–4):47–55

    Google Scholar 

  20. Glories Y (1984) La couleur des vins rouges. 1° e 2° partie. Conn Vigne Vin 18:253–271

    CAS  Google Scholar 

  21. Di Stefano R, Guidoni S (1989) La determinazione dei polifenoli totali nei mosti e nei vini. Vignevini 16(12):47–52

    Google Scholar 

  22. Ribereau-Gayon P, Stonestreet E (1966) Le dosage des tanins du vin rouge et la determination de leur structure. Chim Anal 48:188–192

    CAS  Google Scholar 

  23. Harbertson JF, Picciotto EA, Adams DO (2003) Measurement of polymeric pigments in grape berry extract sand wines using a protein precipitation assay combined with bisulfite bleaching. Am J Enol Vitic 54(4):301–306

    CAS  Google Scholar 

  24. Rinaldi A, Gambuti A, Moio L (2012) Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency. Food Chem 135(4):2498–2504

    Article  CAS  Google Scholar 

  25. King MC, Hall J, Cliff MA (2001) A comparison of methods for evaluating the performance of a trained sensory panel1. J Sens Stud 16(6):567–581

    Article  Google Scholar 

  26. Elias RJ, Waterhouse AL (2010) Controlling the Fenton reaction in wine. J Agric Food Chem 58(3):1699–1707

    Article  CAS  Google Scholar 

  27. Danilewicz JC, Seccombe JT, Whelan J (2008) Mechanism of interaction of polyphenols, oxygen, and sulfur dioxide in model wine and wine. Am J Enol Vitic 59(2):128–136

    CAS  Google Scholar 

  28. Ferreira V, Carrascón V, Bueno M, Ugliano M, Fernandez-Zurbano P (2015) Oxygen consumption by red wines. Part I: consumption rates, relationship with chemical composition and role of SO2. J Agric Food Chem 63(51):10928–10937

    Article  CAS  Google Scholar 

  29. Barril C, Clark AC, Scollary GR (2012) Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine. Anal Chim Acta 732:186–193

    Article  CAS  Google Scholar 

  30. Barril C, Rutledge DN, Scollary GR, Clark AC (2016) Ascorbic acid and white wine production: a review of beneficial versus detrimental impacts.Aust J Grape Wine Res. doi: 10.1111/ajgw.12207

  31. Arapitsas P, Speri G, Angeli A, Perenzoni D, Mattivi F (2014) The influence of storage on the “chemical age” of red wines. Metabolomics 10(5):816–832

    Article  CAS  Google Scholar 

  32. Daniel MA, Elsey GM, Capone DL, Perkins MV, Sefton MA (2004) Fate of damascenone in wine: the role of SO2. J Agric Food Chem 52(26):8127–8131

    Article  CAS  Google Scholar 

  33. Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1999) Principles and practices of winemaking. Springer, Berlin

    Book  Google Scholar 

  34. Gómez-Míguez M, González-Manzano S, Escribano-Bailón MT, Heredia FJ, Santos-Buelga C (2006) Influence of different phenolic copigments on the color of malvidin 3-glucoside. J Agric Food Chem 54(15):5422–5429

    Article  Google Scholar 

  35. Danilewicz JC (2014) Role of tartaric and malic acids in wine oxidation. J Agric Food Chem 62(22):5149–5155

    Article  CAS  Google Scholar 

  36. Francis FJ, Markakis PC (1989) Food colorants: anthocyanins. Crit Rev Food Sci Nutr 28(4):273–314

    Article  CAS  Google Scholar 

  37. Vivas N, Glories Y (1993) Les phénomènes d’oxydoréduction lies a l’élevage en barrique des vins rouges: aspects technologiques. Rev Franç d’oenologie 33(142):33–38

    Google Scholar 

  38. Boselli E, Boulton RB, Thorngate JH, Frega NG (2004) Chemical and sensory characterization of DOC red wines from Marche (Italy) related to vintage and grape cultivars. J Agric Food Chem 52(12):3843–3854

    Article  CAS  Google Scholar 

  39. De Beer D, Harbertson JF, Kilmartin PA, Roginsky V, Barsukova T, Adams DO, Waterhouse AL (2004) Phenolics: a comparison of diverse analytical methods. Am J Enol Vitic 55(4):389–400

    Google Scholar 

  40. Versari A, Boulton RB, Parpinello GP (2007) Analysis of SO2-resistant polymeric pigments in red wines by High-Performance Liquid Chromatography. Am J Enol Vitic 58(4):523–525

    CAS  Google Scholar 

  41. Fulcrand H, Atanasova V, Salas E, Cheynier V (2004) The fate of anthocyanins in wine: are there determining factors? In:ACS symposium series, vol 886. Oxford University Press, 68–88

  42. McRae JM, Kassara S, Kennedy JA, Waters EJ, Smith PA (2013) Effect of wine pH and bottle closure on tannins. J Agric Food Chem 61(47):11618–11627

    Article  CAS  Google Scholar 

  43. Bindon KA, McCarthy MG, Smith PA (2014) Development of wine colour and non-bleachable pigments during the fermentation and ageing of (Vitis vinifera L. cv.) Cabernet Sauvignon wines differing in anthocyanin and tannin concentration. LWT-Food Sci Technol 59(2):923–932

    Article  CAS  Google Scholar 

  44. McRae JM, Day MP, Bindon KA, Kassara S, Schmidt SA, Schulkin A, Smith PA (2015) Effect of early oxygen exposure on red wine colour and tannins. Tetrahedron 71(20):3131–3137

    Article  CAS  Google Scholar 

  45. Mouls L, Fulcrand H (2012) UPLC-ESI-MS study of the oxidation markers released from tannin depolymerization: toward a better characterization of the tannin evolution over food and beverage processing. J Mass Spectrom 47(11):1450–1457

    Article  CAS  Google Scholar 

  46. Poncet-Legrand C, Cabane B, Bautista-Ortín AB, Carrillo S, Fulcrand H, Pérez J, Vernhet A (2010) Tannin oxidation: intra-versus intermolecular reactions. Biomacromolecules 11(9):2376–2386

    Article  CAS  Google Scholar 

  47. Vernhet A, Dubascoux S, Cabane B, Fulcrand H, Dubreucq E, Poncet-Legrand C (2011) Characterization of oxidized tannins: comparison of depolymerization methods, asymmetric flow field-flow fractionation and small-angle X-ray scattering. Anal Bioanal Chem 401(5):1559–1569

    Article  Google Scholar 

  48. Mayén M, Mérida J, Medina M (1995) Flavonoid and non-flavonoid compounds during fermentation and post-fermentation standing of musts from Cabernet Sauvignon and Tempranillo grapes. Am J Enol Vitic 46(2):255–261

    Google Scholar 

  49. Bautista-Ortín AB, Fernández-Fernández JI, López-Roca JM, Gómez-Plaza E (2007) The effects of enological practices in anthocyanins, phenolic compounds and wine colour and their dependence on grape characteristics. J Food Compos Anal 20(7):546–552

    Article  Google Scholar 

  50. Muccillo L, Gambuti A, Frusciante L, Iorizzo M, Moio L, Raieta K, Aversano R (2014) Biochemical features of native red wines and genetic diversity of the corresponding grape varieties from Campania region. Food Chem 143:506–513

    Article  CAS  Google Scholar 

  51. He F, Pan QH, Shi Y, Duan CQ (2008) Chemical synthesis of proanthocyanidins in vitro and their reactions in aging wines. Molecules 13(12):3007–3032

    Article  CAS  Google Scholar 

  52. Gambuti A, Han G, Peterson AL, Waterhouse AL (2015) Sulfur Dioxide and Glutathione Alter the Outcome of Microoxygenation. Am J Enol Vitic. doi:10.5344/ajev.2015.15005

    Google Scholar 

  53. Versari A, Toit W, Parpinello GP (2013) Oenological tannins: a review. Aust J Grape Wine Res 19(1):1–10

    Article  CAS  Google Scholar 

  54. Danilewicz JC (2016) Reaction of oxygen and sulfite in wine. Am J Enol Vitic 67(1):13–17

    Article  Google Scholar 

  55. Balboa-Lagunero T, Arroyo T, Cabellos JM, Aznar M (2011) Sensory and olfactometric profiles of red wines after natural and forced oxidation processes. Am J Enol Vitic 62(4):527–535

    Article  CAS  Google Scholar 

  56. Roullier-Gall C, Witting M, Tziotis D, Ruf A, Lucio M, Schmitt-Kopplin P, Gougeon RD (2015) Advances in wine research. In: SE Ebeler, G Sacks, S Vidal, P Winterhalter (Eds.) American Chemical Society

  57. Ferreira V, Bueno M, Franco-Luesma E, Culleré L, Fernández-Zurbano P (2014) Key changes in wine aroma active compounds during bottle storage of Spanish red wines under different oxygen levels. J Agric Food Chem 62(41):10015–10027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study on the influence of closure oxygen permeability on phenolics, color, astringency markers and sensory attributes was financially supported by Nomacorc SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gambuti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gambuti, A., Siani, T., Picariello, L. et al. Oxygen exposure of tannins-rich red wines during bottle aging. Influence on phenolics and color, astringency markers and sensory attributes. Eur Food Res Technol 243, 669–680 (2017). https://doi.org/10.1007/s00217-016-2780-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-016-2780-3

Keywords

Navigation