Skip to main content
Log in

Identification and LC–MS/MS-based analyses of technical enzymes in wheat flour and baked products

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The use of technical enzymes in bakery industry is necessary for a consistent and good quality of baked products. Since the cultivation of cereals leads to low amounts of endogenous enzymes being present, a need of their commercial alternatives is becoming a routine process in order to meet the consumer quality demands. Targeted quantification proteomics-based methods are necessary for their detection to meet the regulatory criteria. Here, we initially report on the identification of Lipase FE-01, a lipase from fungus Thermomyces lanuginosus, as analyzed by SDS-PAGE, in-Gel digestion, and MALDI–TOF–MS. In further experiments, the focus of the study was directed toward an extensive use and optimization of in-solution enzymatic digestion in combination with LC–MS/MS techniques in identification of specific peptide markers and finally in utilization of the latter in delivering reproducible quantification data for several different technical enzymes (α-amylases, xylanase, and lipases from microbial origin) in complex matrices such as baked bread and wheat flour. Two digestion protocols (a fast option using thermocycler program and the well-established overnight method) were tested, and both of these can be successfully applied. The application of isotopically labeled analogs of the MRM targeted peptides as internal standards and the addition of an internal protein standard during the extraction/digestion experiment were compared to determine the optimal quantification algorithm of the recovered enzyme concentrations. Thus, a standardized sensitive LC–MS/MS method could be developed to determine technical enzymes as forthcoming ingredients in the prefabricated food formulations in concentrations lower than 10 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Butt MS, Tahir-Nadeem T, Ahmad Z, Sultan MT (2008) Xylanase and their applications in baking industry. Natl Inst Food Sci Technol 46(1):22–31

    CAS  Google Scholar 

  2. Caballero PA, Gomez M, Rosell CM (2007) Bread quality and dough rheology of enzyme-supplemented wheat flour. Eur Food Res Technol 224(5):525–534

    Article  CAS  Google Scholar 

  3. Cauvain SP, Young LS (2007) Technology of breadmaking, 2nd edn. Springer, Berlin

    Google Scholar 

  4. Gerits LR, Pareyt B, Decamps K, Delcour JA (2014) Lipases and their functionality in the production of wheat-based food systems. Compr Rev Food Sci F 13(5):978–989. doi:10.1111/1541-4337.12085

    Article  CAS  Google Scholar 

  5. Gerits LR, Pareyt B, Delcour JA (2014) A lipase based approach for studying the role of wheat lipids in bread making. Food Chem 156:190–196. doi:10.1016/j.foodchem.2014.01.107

    Article  CAS  Google Scholar 

  6. Faltermaier A, Waters D, Becker T, Arendt E, Gastl M (2014) Common wheat (Triticum aestivum L.) and its use as a brewing cereal—a review. J I Brew 120 (1):1–15. doi:10.1002/jib.107

  7. Mares DJ, Mrva K (2014) Wheat grain preharvest sprouting and late maturity alpha-amylase. Planta 240(6):1167–1178. doi:10.1007/s00425-014-2172-5

    Article  CAS  Google Scholar 

  8. Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agr Sci 144:3–17. doi:10.1017/S0021859606005867

    Article  Google Scholar 

  9. Gao X, Hu CH, Li HZ, Yao YJ, Meng M, Dong J, Zhao WC, Chen QJ, Li XY (2013) Factors affecting pre-harvest sprouting resistance in wheat (Triticum Aestivum L.): a review. J Anim Plant Sci 23(2):556–565

    CAS  Google Scholar 

  10. Every D, Simmons L, Al-Hakkak J, Hawkins S, Ross M (2002) Amylase, falling number, polysaccharide, protein and ash relationships in wheat millstreams. Euphytica 126(1):135–142. doi:10.1023/A:1019699000975

    Article  CAS  Google Scholar 

  11. Bae W, Lee SH, Yoo SH, Lee S (2014) Utilization of a maltotetraose-producing amylase as a whole wheat bread improver: dough rheology and baking performance. J Food Sci 79(8):E1535–E1540. doi:10.1111/1750-3841.12538

    Article  CAS  Google Scholar 

  12. Duran E, Leon A, Barber B, de Barber CB (2001) Effect of low molecular weight dextrins on gelatinization and retrogradation of starch. Eur Food Res Technol 212(2):203–207. doi:10.1007/s002170000205

    Article  CAS  Google Scholar 

  13. Leman P, Goesaert H, Delcour JA (2009) Residual amylopectin structures of amylase-treated wheat starch slurries reflect amylase mode of action. Food Hydrocolloid 23(1):153–164. doi:10.1016/j.foodhyd.2007.12.007

    Article  CAS  Google Scholar 

  14. Mikus L, Kovacova M, Dodok L, Medved’ova A, Mikusova L, Sturdik E (2013) Effects of enzymes and hydrocolloids on physical, sensory, and shelf-life properties of wheat bread. Chem Pap 67(3):292–299. doi:10.2478/s11696-012-0286-4

    Article  CAS  Google Scholar 

  15. Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases and their applications in baking industry. Food Technol Biotech 46(1):22–31

    CAS  Google Scholar 

  16. Schaffarczyk M, Ostdal H, Koehler P (2014) Lipases in wheat breadmaking: analysis and functional effects of lipid reaction products. J Agric Food Chem 62(32):8229–8237. doi:10.1021/Jf5022434

    Article  CAS  Google Scholar 

  17. Uhr L, Buchholz T, Homann T, Huschek G, Rawel HM (2014) Targeted proteomics-based analysis of technical enzymes from fungal origin in baked products. J Cereal Sci 60(2):440–447. doi:10.1016/j.jcs.2014.04.007

    Article  CAS  Google Scholar 

  18. Ali M, Homann T, Khalil M, Kruse HP, Rawel H (2013) Milk whey protein modification by coffee-specific phenolics: effect on structural and functional properties. J Agric Food Chem 61(28):6911–6920. doi:10.1021/jf402221m

    Article  CAS  Google Scholar 

  19. Ferranti P, Mamone G, Picariello G, Addeo F (2007) Mass spectrometry analysis of gliadins in celiac disease. J Mass Spectrom 42(12):1531–1548. doi:10.1002/jms.1361

    Article  CAS  Google Scholar 

  20. Dupont FM, Vensel WH, Tanaka CK, Hurkman WJ, Altenbach SB (2011) Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Sci 9:10. doi:10.1186/1477-5956-9-10

    Article  CAS  Google Scholar 

  21. McNamara LE, Dalby MJ, Riehle MO, Burchmore R (2010) Fluorescence two-dimensional difference gel electrophoresis for biomaterial applications. J R Soc Interface 7:S107–S117. doi:10.1098/rsif.2009.0177.focus

    Article  CAS  Google Scholar 

  22. Zadraznik T, Hollung K, Egge-Jacobsen W, Meglic V, Sustar-Vozlic J (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 78:254–272. doi:10.1016/j.jprot.2012.09.021

    Article  CAS  Google Scholar 

  23. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. doi:10.1038/nature01511

    Article  CAS  Google Scholar 

  24. Wu WW, Wang GH, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5(3):651–658. doi:10.1021/pr050405o

    Article  CAS  Google Scholar 

  25. Mirza SP, Olivier M (2008) Methods and approaches for the comprehensive characterization and quantification of cellular proteomes using mass spectrometry. Physiol Genomics 33(1):3–11. doi:10.1152/physiolgenomics.00292.2007

    Article  CAS  Google Scholar 

  26. Ertas N, Turker S (2014) Bulgur processes increase nutrition value: possible role in in vitro protein digestibility, phytic acid, trypsin inhibitor activity and mineral bioavailability. J Food Sci Technol 51(7):1401–1405. doi:10.1007/s13197-012-0638-7

    Article  CAS  Google Scholar 

  27. Rohn S, Rawel HM, Kroll J (2002) Inhibitory effects of plant phenols on the activity of selected enzymes. J Agric Food Chem 50(12):3566–3571

    Article  CAS  Google Scholar 

  28. Altenbach SB, Vensel WH, Dupont FM (2011) The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86. BMC Res Notes 4:242. doi:10.1186/1756-0500-4-242

    Article  CAS  Google Scholar 

  29. Prandi B, Faccini A, Tedeschi T, Galaverna G, Sforza S (2013) LC/MS analysis of proteolytic peptides in wheat extracts for determining the content of the allergen amylase/trypsin inhibitor CM3: influence of growing area and variety. Food Chem 140(1–2):141–146. doi:10.1016/j.foodchem.2013.02.039

    Article  CAS  Google Scholar 

  30. Turapov OA, Mukamolova GV, Bottrill AR, Pangburn MK (2008) Digestion of native proteins for proteomics using a thermocycler. Anal Chem 80(15):6093–6099. doi:10.1021/ac702527b

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshadrai M. Rawel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with humans or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhr, L., Wieland, P., Homann, T. et al. Identification and LC–MS/MS-based analyses of technical enzymes in wheat flour and baked products. Eur Food Res Technol 242, 247–257 (2016). https://doi.org/10.1007/s00217-015-2536-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2536-5

Keywords

Navigation