Skip to main content
Log in

Binding of a novel bacteriostatic agent—chitosan oligosaccharides–kojic acid graft copolymer to bovine serum albumin: spectroscopic and conformation investigations

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this paper, a novel chitosan oligosaccharides derivative—chitosan oligosaccharides–kojic acid graft copolymer (COS/KA), COS, and KA were selected to investigate the binding to bovine serum albumin (BSA) using UV–Vis spectroscopy, fluorescence, synchronous fluorescence, and circular dichroism (CD) at pH 7.4. The results indicated that the tryptophan residues of BSA to the distance of COS/KA, COS, and KA were <8 nm, the quenching constants K0 were decreased, and the value of Kq were much >2.0 × 1010 L mol−1 s−1 for COS/KA–BSA, COS–BSA, and KA–BSA at 298, 302, 306, 310 K, respectively, those confirmed that the quenching process belongs to static quenching. The thermodynamic parameters ∆H°, ΔG°, ΔS° at different temperatures were calculated and indicated that hydrophobic and electrostatic forces played important roles in the binding process, and the enhanced binding affinity mainly associated with the increase of the hydrophobicity. Moreover, the CD data demonstrated that the secondary structure of BSA was slightly altered in the presence of COS/KA, COS, and KA, with different reduced α-helix contents (46.30 ± 0.20, 48.60 ± 0.40, 50.70 ± 0.20), respectively. The work provides basic data for the binding mechanism of COS/KA with BSA in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Celiktas OY, Kocabas E, Bedir E, Sukan FV, Ozek T, Baser K (2007) Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem 100(2):553–559. doi:10.1016/j.foodchem.2005.10.011

    Article  CAS  Google Scholar 

  2. Jacob C, Mathiasen L, Powell D (2010) Designing effective messages for microbial food safety hazards. Food Control 21(1):1–6. doi:10.1016/j.foodcont.2009.04.011

    Article  Google Scholar 

  3. Kim J, Marshall MR, Wei C-i (1995) Antibacterial activity of some essential oil components against five foodborne pathogens. J Agric Food Chem 43(11):2839–2845. doi:10.1021/jf00059a013

    Article  CAS  Google Scholar 

  4. Vattem DA, Lin YT, Labbe RG, Shetty K (2004) Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against select food borne pathogens. Innov Food Sci Emerg Technol 5(1):81–91. doi:10.1016/j.ifset.2003.09.002

    Article  CAS  Google Scholar 

  5. Cho Y-S, Lee S-H, Kim S-K, Ahn C-B, Je J-Y (2011) Aminoethyl-chitosan inhibits LPS-induced inflammatory mediators, iNOS and COX-2 expression in RAW264. 7 mouse macrophages. Process Biochem 46(2):465–470. doi:10.1016/j.procbio.2010.09.019

    Article  CAS  Google Scholar 

  6. Jeon Y-J, Kim S-K (2000) Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydr Polym 41(2):133–141. doi:10.1016/S0144-8617(99)00084-3

    Article  CAS  Google Scholar 

  7. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids 25(2):170–179. doi:10.1016/j.foodhyd.2010.03.003

    Article  CAS  Google Scholar 

  8. Qin C, Zhou B, Zeng L, Zhang Z, Liu Y, Du Y, Xiao L (2004) The physicochemical properties and antitumor activity of cellulase-treated chitosan. Food Chem 84(1):107–115. doi:10.1016/S0308-8146(03)00181-X

    Article  CAS  Google Scholar 

  9. Chen JS, Wei C-I, Rolle RS, Otwell WS, Balaban MO, Marshall MR (1991) Inhibitory effect of kojic acid on some plant and crustacean polyphenol oxidases. J Agric Food Chem 39(8):1396–1401. doi:10.1021/jf00008a008

    Article  CAS  Google Scholar 

  10. Aytemir MD, Özçelik B (2010) A study of cytotoxicity of novel chlorokojic acid derivatives with their antimicrobial and antiviral activities. Eur J Med Chem 45(9):4089–4095. doi:10.1016/j.ejmech.2010.05.069

    Article  CAS  Google Scholar 

  11. Liu X, Xia W, Jiang Q, Xu Y, Yu P (2013) Synthesis, characterization, and antimicrobial activity of kojic acid grafted chitosan oligosaccharide. J Agric Food Chem 62(1):297–303. doi:10.1021/jf404026f

    Article  Google Scholar 

  12. Giess F, Friedrich MG, Heberle J, Naumann RL, Knoll W (2004) The Protein-Tethered Lipid Bilayer: a Novel Mimic of the Biological Membrane. Biophys J 87(5):3213–3220. doi:10.1529/biophysj.104.046169

    Article  CAS  Google Scholar 

  13. Parker M, Pattus F, Tucker A, Tsernoglou D (1989) Structure of the membrane-pore-forming fragment of colicin A. Nature 337:93–96. doi:10.1038/337093a0

    Article  CAS  Google Scholar 

  14. Bi S, Song D, Kan Y, Xu D, Tian Y, Zhou X, Zhang H (2005) Spectroscopic characterization of effective components anthraquinones in Chinese medicinal herbs binding with serum albumins. Spectrochim Acta Part A Mol Biomol Spectrosc 62(1):203–212. doi:10.1016/j.saa.2004.12.049

    Article  Google Scholar 

  15. Ravindran A, Singh A, Raichur AM, Chandrasekaran N, Mukherjee A (2010) Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA). Colloids Surf, B 76(1):32–37. doi:10.1016/j.colsurfb.2009.10.005

    Article  CAS  Google Scholar 

  16. Wang F, Huang W, Dai Z (2008) Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin. J Mol Struct 875(1):509–514. doi:10.1016/j.molstruc.2007.05.034

    Article  CAS  Google Scholar 

  17. Yang Q, Liang J, Han H (2009) Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques. J Phys Chem B 113(30):10454–10458. doi:10.1021/jp904004w

    Article  CAS  Google Scholar 

  18. Wu T, Wu Q, Guan S, Su H, Cai Z (2007) Binding of the environmental pollutant naphthol to bovine serum albumin. Biomacromolecules 8(6):1899–1906. doi:10.1021/bm061189v

    Article  CAS  Google Scholar 

  19. Chi Z, Liu R, Teng Y, Fang X, Gao C (2010) Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations. J Agric Food Chem 58(18):10262–10269. doi:10.1021/jf101417w

    Article  CAS  Google Scholar 

  20. Mote U, Bhattar S, Patil S, Kolekar G (2010) Interaction between felodipine and bovine serum albumin: fluorescence quenching study. Luminescence 25(1):1–8. doi:10.1002/bio.1130

    CAS  Google Scholar 

  21. Zhang G, Zhao N, Hu X, Tian J (2010) Interaction of alpinetin with bovine serum albumin: probing of the mechanism and binding site by spectroscopic methods. Spectrochim Acta Part A Mol Biomol Spectrosc 76(3):410–417. doi:10.1016/j.saa.2010.04.009

    Article  Google Scholar 

  22. Bourassa P, Kanakis C, Tarantilis P, Pollissiou M, Tajmir-Riahi H (2010) Resveratrol, Genistein, and Curcumin Bind Bovine Serum Albumin†. J Phys Chem B 114(9):3348–3354. doi:10.1021/jp9115996

    Article  CAS  Google Scholar 

  23. Hu Y-J, Liu Y, Wang J-B, Xiao X-H, Qu S-S (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed Anal 36(4):915–919. doi:10.1016/j.jpba.2004.08.021

    Article  CAS  Google Scholar 

  24. Liu X-F, Xia Y-M, Fang Y (2005) Effect of metal ions on the interaction between bovine serum albumin and berberine chloride extracted from a traditional Chinese Herb coptis chinensis franch. J Inorg Biochem 99(7):1449–1457. doi:10.1016/j.jinorgbio.2005.02.025

    Article  CAS  Google Scholar 

  25. Yuan T, Weljie AM, Vogel HJ (1998) Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding. Biochemistry 37(9):3187–3195. doi:10.1021/bi9716579

    Article  CAS  Google Scholar 

  26. Li D, Zhu J, Jin J (2007) Spectrophotometric studies on the interaction between nevadensin and lysozyme. J Photochem Photobiol, A 189(1):114–120. doi:10.1016/j.jphotochem.2007.01.017

    Article  CAS  Google Scholar 

  27. Xie M-X, Long M, Liu Y, Qin C, Wang Y-D (2006) Characterization of the interaction between human serum albumin and morin. Biochimica et Biophysica Acta (BBA)-General Subjects 1760(8): 1184–1191.doi: 10.1016/j.bbagen.2006.03.026

  28. Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66(3):455–458. doi:10.1021/j100809a020

    Article  CAS  Google Scholar 

  29. Xie M-X, Xu X-Y, Wang Y-D (2005) Interaction between hesperetin and human serum albumin revealed by spectroscopic methods. Biochimica et Biophysica Acta (BBA)-General Subjects 1724 (1): 215–224.doi: 10.1016/j.bbagen.2005.04.009

  30. Wang Y-Q, Zhang H-M, Zhang G-C, Tao W-H, Tang S-H (2007) Interaction of the flavonoid hesperidin with bovine serum albumin: a fluorescence quenching study. J Iumin 126(1):211–218. doi:10.1016/j.jlumin.2006.06.013

    CAS  Google Scholar 

  31. Horrocks Jr WD, Peter Snyder A (1981) Measurement of distance between fluorescent amino acid residues and metal ion binding sites. Quantitation of energy transfer between tryptophan and terbium (III) or europium (III) in thermolysin. Biochem Biophys Res Commun 100 (1):111–117.doi: 10.1016/S0006-291X(81)80070-8

  32. Kurittu J, Lönnberg S, Virta M, Karp M (2000) A group-specific microbiological test for the detection of tetracycline residues in raw milk. J Agric Food Chem 48(8):3372–3377. doi:10.1021/jf9911794

    Article  CAS  Google Scholar 

  33. Li D, Zhu M, Xu C, Ji B (2011) Characterization of the baicalein–bovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches. Eur J Med Chem 46(2):588–599. doi:10.1016/j.ejmech.2010.11.038

    Article  CAS  Google Scholar 

  34. Li S, Huang K, Zhong M, Guo J, Wang W-z, Zhu R (2010) Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin. Spectrochim Acta Part A Mol Biomol Spectrosc 77(3):680–686. doi:10.1016/j.saa.2010.04.026

    Article  Google Scholar 

  35. Congdon RW, Muth GW, Splittgerber AG (1993) The binding interaction of Coomassie blue with proteins. Anal Biochem 213(2):407–413. doi:10.1006/abio.1993.1439

    Article  CAS  Google Scholar 

  36. Lu J-Q, Jin F, Sun T-Q, Zhou X-W (2007) Multi-spectroscopic study on interaction of bovine serum albumin with lomefloxacin–copper (II) complex. Int J Biol Macromol 40(4):299–304. doi:10.1016/j.ijbiomac.2006.08.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff at our laboratory for the assistance they have provided in this study. This research was financially supported by the Twelfth Five Year National Science and Technology Plan of rural field research mission contract (2011BAD23B00), and the Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province (BA2009082).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenshui Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xia, W., Jiang, Q. et al. Binding of a novel bacteriostatic agent—chitosan oligosaccharides–kojic acid graft copolymer to bovine serum albumin: spectroscopic and conformation investigations. Eur Food Res Technol 240, 109–118 (2015). https://doi.org/10.1007/s00217-014-2312-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-014-2312-y

Keywords

Navigation