Skip to main content
Log in

Surface display of Acetobacter pasteurianus AdhA on Bacillus subtilis spores to enhance ethanol tolerance for liquor industrial potential

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Bacillus subtilis have always been regarded as one of the most important functional bacteria for flavor formation in liquor industry. During the flavor formation process, B. subtilis facilitate the conversion of ethanol into aroma compounds by esterification and Maillard reactions mainly due to their vigorous enzymatic secretion and metabolic systems. However, high concentrations of ethanol could be a significant stressor to inhibit Bacillus spp. propagation and thus impair their effective flavor-forming ability. Therefore, in order to obtain improved B. subtilis strains with enhanced ethanol tolerance for liquor industrial potential, we adopted spore surface display strategy in the present study. Acetobacter pasteurianus alcohol dehydrogenase A (adhA) gene was employed as foreign gene, and recombinant integrative plasmid pJS700-adhA was constructed by using B. subtilis spore coat protein CotC as a fusion partner. A combination of amylase activity assay, site-directed PCR identification, Western blot analysis, and immunofluorescence microscopy sequentially demonstrated that AdhA was successfully expressed and displayed on recombinant B. subtilis mutant spore surface. In addition, ethanol tolerance assay showed that the recombinant mutant exhibited enhanced ethanol resistance than its wild-type form when confronted with high concentrations of ethanol, indicating both of its validity in methodology and application potential for liquor industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C-l Wang, D-j Shi, G-l Gong (2008) Microorganisms in Daqu: a starter culture of Chinese Maotai-flavor liquor. World J Microbiol Biotechnol 24(10):2183–2190

    Article  Google Scholar 

  2. Li X-R, Ma E-B, Yan L-Z, Meng H, Du X-W, Zhang S-W, Quan Z-X (2011) Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int J Food Microbiol 146(1):31–37

    Article  CAS  Google Scholar 

  3. Wu X-H, Zheng X-W, Han B-Z, Vervoort J, Nout MR (2009) Characterization of Chinese liquor starter, “Daqu”, by flavor type with 1H NMR-based nontargeted analysis. J Agric Food Chem 57(23):11354–11359

    Article  CAS  Google Scholar 

  4. Mukherjee AK, Borah M, Rai SK (2009) To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergent formulations. Biochem Eng J 43(2):149–156

    Article  CAS  Google Scholar 

  5. Shi A-H, Guan J-K, Zhang W-P, Xu E-R, Xu C-X (2001) Analysis of microbial species in Xufang Daqu and determination of the dominant microbes. Liquor Mak Sci Technol 6(108):26–28

    Google Scholar 

  6. Patel MA, Ou MS, Harbrucker R, Aldrich HC, Buszko ML, Ingram LO, Shanmugam K (2006) Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Appl Environ Microbiol 72(5):3228–3235

    Article  CAS  Google Scholar 

  7. Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci 105(37):13769–13774

    Article  CAS  Google Scholar 

  8. Zhu B-F, Xu Y, Fan W-L (2010) High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach. J Ind Microbiol Biotechnol 37(2):179–186

    Article  CAS  Google Scholar 

  9. Kim J, Schumann W (2009) Display of proteins on Bacillus subtilis endospores. Cell Mol Life Sci 66(19):3127–3136

    Article  CAS  Google Scholar 

  10. Hinc K, Isticato R, Dembek M, Karczewska J, Iwanicki A, Peszyńska-Sularz G, De Felice M, Obuchowski M, Ricca E (2010) Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb Cell Fact 9(1):2

    Article  Google Scholar 

  11. Mauriello E, Duc LH, Isticato R, Cangiano G, Hong H, De Felice M, Ricca E, Cutting S (2004) Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22(9–10):1177

    Article  CAS  Google Scholar 

  12. Sonenshein AL (2000) Endospore-forming bacteria: an overview. Prokaryotic development American Society for Microbiology, Washington, DC, pp 133–150

    Google Scholar 

  13. Potot S, Serra CR, Henriques AO, Schyns G (2010) Display of recombinant proteins on Bacillus subtilis spores, using a coat-associated enzyme as the carrier. Appl Environ Microbiol 76(17):5926–5933

    Article  CAS  Google Scholar 

  14. Permpoonpattana P, Hong HA, Phetcharaburanin J, Huang J-M, Cook J, Fairweather NF, Cutting SM (2011) Immunization with Bacillus spores expressing toxin A peptide repeats protects against infection with Clostridium difficile strains producing toxins A and B. Infect Immun 79(6):2295–2302

    Article  CAS  Google Scholar 

  15. Wang N, Chang C, Yao Q, Li G, Qin L, Chen L, Chen K (2011) Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS One 6(6):e21454

    Article  CAS  Google Scholar 

  16. Duc LH, Hong HA, Atkins HS, Flick-Smith HC, Durrani Z, Rijpkema S, Titball RW, Cutting SM (2007) Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25(2):346–355

    Article  CAS  Google Scholar 

  17. Negri A, Potocki W, Iwanicki A, Obuchowski M, Hinc K (2013) Expression and display of Clostridium difficile protein FliD on the surface of Bacillus subtilis spores. J Med Microbiol 62(Pt 9):1379–1385

    Article  CAS  Google Scholar 

  18. Mao L, Jiang S, Li G, He Y, Chen L, Yao Q, Chen K (2012) Surface display of human serum albumin on Bacillus subtilis spores for oral administration. Curr Microbiol 64(6):545–551

    Article  CAS  Google Scholar 

  19. Feng F, Hu P, Chen L, Tang Q, Lian C, Yao Q, Chen K (2013) Display of human proinsulin on the Bacillus subtilis spore surface for oral administration. Curr Microbiol 67(1):1–8

    Article  CAS  Google Scholar 

  20. Sambrook J (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, p 2344. New York

  21. Julkowska D, Obuchowski M, Holland IB, Séror SJ (2005) Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol 187(1):65–76

    Article  CAS  Google Scholar 

  22. Nicholson W, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 391–450

    Google Scholar 

  23. Wuytack E, Michiels C (2001) A study on the effects of high pressure and heat on Bacillus subtilis spores at low pH. Int J Food Microbiol 64(3):333–341

    Article  CAS  Google Scholar 

  24. Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus, vol 707. Wiley, New York

    Google Scholar 

  25. Isticato R, Esposito G, Zilhão R, Nolasco S, Cangiano G, De Felice M, Henriques AO, Ricca E (2004) Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J Bacteriol 186(4):1129–1135

    Article  CAS  Google Scholar 

  26. Henriques AO, Moran CP (2000) Structure and assembly of the bacterial endospore coat. Methods 20(1):95–110

    Article  CAS  Google Scholar 

  27. Barák I, Ricca E, Cutting SM (2005) From fundamental studies of sporulation to applied spore research. Mol Microbiol 55(2):330–338

    Article  Google Scholar 

  28. Toyama H, Mathews FS, Adachi O, Matsushita K (2004) Quinohemoprotein alcohol dehydrogenases: structure, function, and physiology. Arch Biochem Biophys 428(1):10–21

    Article  CAS  Google Scholar 

  29. Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K (2006) Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl Microbiol Biotechnol 70(3):366–373

    Article  CAS  Google Scholar 

  30. Trček J, Jernejc K, Matsushita K (2007) The highly tolerant acetic acid bacterium Gluconacetobacter europaeus adapts to the presence of acetic acid by changes in lipid composition, morphological properties and PQQ-dependent ADH expression. Extremophiles 11(4):627–635

    Article  Google Scholar 

  31. Quintero Y, Poblet M, Guillamon J, Mas A (2009) Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions. J Appl Microbiol 106(2):666–674

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Degang Ning for kindly providing plasmid pJS700. We are also grateful to Dr. Guohui Li for his patient technical help. This work was supported by the National Natural Science Foundation of China (NO. 31272507).

Conflict of interest

None.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Y., Feng, F., Chen, L. et al. Surface display of Acetobacter pasteurianus AdhA on Bacillus subtilis spores to enhance ethanol tolerance for liquor industrial potential. Eur Food Res Technol 238, 285–293 (2014). https://doi.org/10.1007/s00217-013-2100-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-2100-0

Keywords

Navigation