Skip to main content
Log in

Arginine aminopeptidase from white shrimp (Litopenaeus vannamei) muscle: purification and characterization

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Aminopeptidases act on N-terminal of proteins and peptides produce free amino acids making an impact on the final flavor of foods. An arginine aminopeptidase (RAP) which preferred to hydrolyze basic amino acids from N-termini of peptides and proteins was purified to homogeneity from white shrimp (Litopenaeus vannamei) muscle. The molecular mass of RAP was estimated as 100 kDa on SDS-PAGE. Peptide mass fingerprinting analysis obtained 95 amino acid residues which was 100 and 77.9 % identical to puromycin-sensitive aminopeptidases from insect and zebrafish, respectively. Optimum pH and temperature of the RAP were 7.0 and 30 °C. RAP rapidly hydrolyzed fluorogenic substrates l-arginine 4-methylcoumaryl-7-amide (Arg-MCA) and Lys-MCA with K m values of 2.7 and 4.9 μM, respectively. The enzyme can be strongly inhibited by puromycin, bestatin, and 1,10-phenanthroline and partially inhibited by ethylenediaminetetraacetic acid (EDTA) and ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA). Moreover, the competitive inhibition of puromycin for RAP was confirmed, and K i value was calculated as 0.07 nM. Metal ions of Zn2+ and Mn2+ significantly reactivated the inactive apoenzyme activity dialyzed by EDTA. All these results indicated that the purified enzyme is a metalloaminopeptidase which would possibly contribute to flavor development in shrimp muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Taylor A (1993) Aminopeptidases: structure and function. FASEB J 7(2):290–298

    CAS  Google Scholar 

  2. Kawata S, Takayama S, Ninomiya K, Makisumi S (1980) Purification and some properties of porcine liver aminopeptidase B. J Biochem 88(4):1025–1032

    CAS  Google Scholar 

  3. Hersh LB, McKelvy JF (1981) An aminopeptidase from bovine brain which catalyzes the hydrolysis of enkephalin. J Neurochem 36(1):171–178

    Article  CAS  Google Scholar 

  4. Mantle D, Lauffart B, McDermott JR, Kidd AM, Pennington RJT (1985) Purification and characterization of two Cl-activated aminopeptidases hydrolysing basic termini from human skeletal muscle. Eur J Biochem 147(2):307–312

    Article  CAS  Google Scholar 

  5. Nishimura T, Okitani A, Kato H (1988) Identification of neutral aminopeptidases responsible for peptidolysis in postmortem rabbit skeletal muscle, vol 52, 9. Agricultural Chemical Society of Japan, Tokyo

    Google Scholar 

  6. Maehashi K, Abe T, Yasuhara T, Yamasato K, Yamamoto Y, Udaka S (2003) Purification and characterization of a novel glutamyl aminopeptidase from chicken meat. Meat Sci 64(2):163–168

    Article  CAS  Google Scholar 

  7. Chen X, Wu GP, Cai QF, Liu GM, Osatomi K, Su WJ, Cao MJ (2012) Biochemical characterisation of an aminopeptidase with highest preference for lysine from Japanese flounder skeletal muscle. Food Chem 130(3):679–686

    Article  CAS  Google Scholar 

  8. Wu GP, Cao MJ, Chen Y, Liu BX, Su WJ (2008) Leucine aminopeptidase from red sea bream (Pagrus major) skeletal muscle: purification, characterization, cellular Location, and tissue distribution. J Agric Food Chem 56(20):9653–9660

    Article  CAS  Google Scholar 

  9. Flores M, Sanz Y, Spanier AM, Aristoy MC, Toldrá F (1998) Contribution of muscle and microbial aminopeptidases to flavor development in dry-cured meat products. In: Contis ET, Ho C-T, Mussinan CJ, Parliment TH, Shahidi F, Spanier AM (eds) Developments in food science, vol 40. Elsevier, Amsterdam, pp 547–557

  10. Toldrá F, Aristoy MC, Flores M (2000) Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Res Int 33(3–4):181–185

    Article  Google Scholar 

  11. Hopsu VK, Mäkinen KK, Glenner GG (1966) Purification of a mammalian peptidase selective for N-terminal arginine and lysine residues: aminopeptidase B. Arch Biochem Biophys 114(3):557–566

    Article  CAS  Google Scholar 

  12. Mäkinen KK, Mäkinen PL (1978) Purification and characterization of two human erythrocyte arylamidases preferentially hydrolysing N-terminal arginine or lysine residues. Biochem J 175(3):1051–1067

    Google Scholar 

  13. Bogra P, Singh J, Singh H (2009) Purification and characterization of aminopeptidase B from goat brain. Process Biochem 44(7):776–780

    Article  CAS  Google Scholar 

  14. Sanz Y, Toldra F (2002) Purification and characterization of an arginine aminopeptidase from Lactobacillus sakei. Appl Environ Microb 68(4):1980–1987

    Article  CAS  Google Scholar 

  15. Foulon T, Cadel S, Cohen P (1999) Aminopeptidase B (EC 3.4.11.6). Int J Biochem Cell B 31(7):747–750

    Article  CAS  Google Scholar 

  16. Liu BX, Du XL, Zhou LG, Hara K, Su WJ, Cao MJ (2008) Purification and characterization of a leucine aminopeptidase from the skeletal muscle of common carp (Cyprinus carpio). Food Chem 108(1):140–147

    Article  CAS  Google Scholar 

  17. Umetsu H, Arai M, Ota T, Kudo R, Sugiura H, Ishiyama H, Sasaki K (2003) Purification and properties of an aminopeptidase from the mid-gut gland of scallop (Patinopecten yessoensis). Comp Biochem Physiol B: Biochem Mol Biol 136(4):935–942

    Article  Google Scholar 

  18. Anonymous (2011) China fisheries yearbook. China Agriculture Press, Beijing

  19. Xue C, Kong F, Li Z, Lin H, Lou W (1997) Formation mechanism of flavoring compounds in Penaeus orientalis. J Fish China 21(1):57–62

    Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  Google Scholar 

  21. Mortz E, Krogh TN, Vorum H, Görg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1(11):1359–1363

    Article  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  23. Tsou CL (1988) Kinetics of substrate reaction during irreversible modification of enzyme activity. In: Meister A (ed) Advances in enzymology and related areas of molecular biology, vol 61. John Wiley & Sons, Inc., Hoboken, pp 381–436

  24. Cristofoletti PT, Mendonça de Sousa FA, Rahbé Y, Terra WR (2006) Characterization of a membrane-bound aminopeptidase purified from Acyrthosiphon pisum midgut cells. FEBS J 273(24):5574–5588

    Article  CAS  Google Scholar 

  25. Mane S, Damle M, Harikumar P, Jamdar S, Gade W (2010) Purification and characterization of aminopeptidase N from chicken intestine with potential application in debittering. Process Biochem 45(6):1011–1016

    Article  CAS  Google Scholar 

  26. Flores M, Aristoy MC, Toldrá F (1993) HPLC purification and characterization of porcine muscle aminopeptidase B. Biochimie 75(10):861–867

    Article  CAS  Google Scholar 

  27. Chen SH, Cao MJ, Su WJ, Wu GP (2011) Purification and characterization of a novel leucine aminopeptidase from the earthworm Eisenia foetida. Process Biochem 46(8):1641–1648

    Article  CAS  Google Scholar 

  28. Rhyu MR, Nishimura T, Kato Y, Okitani A, Kato H (1992) Purification and properties of aminopeptidase H from chicken skeletal muscle. Eur J Biochem 208(1):53–59

    Article  CAS  Google Scholar 

  29. Toldrá F, Flores M, Sanz Y (1997) Dry-cured ham flavour: enzymatic generation and process influence. Food Chem 59(4):523–530

    Article  Google Scholar 

  30. Chen SH, Cao MJ, Huang JZ, Wu GP (2011) Identification of a puromycin-sensitive aminopeptidase from zebrafish (Danio rerio). Comp Biochem Physiol B: Biochem Mol Biol 159(1):10–17

    Article  Google Scholar 

  31. Yamamoto Y, Li YH, Ushiyama I, Nishimura A, Ohkubo I, Nishi K (2000) Puromycin-sensitive alanyl aminopeptidase from human liver cytosol: purification and characterization. Forensic Sci Int 113(1–3):143–146

    Article  CAS  Google Scholar 

  32. Hersh LB (1981) Inhibition of aminopeptidase and acetylcholinesterase by puromycin and puromycin analogs. J Neurochem 36(4):1594–1596

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Scientific Foundation of China (Nos. 31071519, 31271838), National Key Technology R&D Program of China (2012BAD38B09) and the Foundation for Innovative Research Team of Jimei University (2010A005).

Conflict of interest

None.

Compliance with ethics requirement

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Jie Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Cai, QF., Wu, GP. et al. Arginine aminopeptidase from white shrimp (Litopenaeus vannamei) muscle: purification and characterization. Eur Food Res Technol 236, 759–769 (2013). https://doi.org/10.1007/s00217-013-1941-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-013-1941-x

Keywords

Navigation