Skip to main content
Log in

l(+)-Lactic acid production from furfural residues and corn kernels with treated yeast as nutrients

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

In this study, Streptococcus thermophilus and Lactobacillus bulgaricus were used to produce l(+)-lactic acid by simultaneous saccharification and fermentation (SSF). The use of hydrolyzed yeast as cheap nutrients and mixtures of cellulosic materials and starchy materials as carbon source for l(+)-LA production was evaluated. Heat treatment (121 °C) was proven to be an effective method to improve the performances of yeast as nutrients for the fermentations using different carbon sources. The addition of yeast hydrolyzate obviously lowered the surface tension of medium and improved enzyme hydrolysis of furfural residue (FR) as the concentration was beyond 10 g/L. Carbon–nitrogen ratio, substrates composition, substrates feeding rate and enzyme-feeding strategy will affect the productivity of l(+)-LA production from mixed substrates. SSF of FR and corn saccharification liquid tends to obtain good yields, when the total WIS content is in 10 % and carbon–nitrogen ratio is about 30. This study provides an encouraging means of producing l(+)-LA from lignocellulosic resource and starchy resource, which could optimize the use of raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SSF:

Simultaneous saccharification and fermentation

FR:

Water-rinsed furfural residue

CR:

Corn saccharification liquid

YH:

Yeast hydrolyzate

LA:

Lactic acid

LAB:

Lactic acid bacteria

References

  1. John RP, Nampoothiri KM, Pandey A (2007) Appl Microbiol Biotechnol 74:524–534

    Article  CAS  Google Scholar 

  2. Wee YJ, Kim JN, Ryu HW (2006) Food Technol Biotechnol 44:163–172

    CAS  Google Scholar 

  3. Wang LM, Zhao B, Liu B, Yu B, Ma CQ, Su F, Hua DL, Li QG, Ma YH, Xu P (2010) Bioresour Technol 101:7908–7915

    Article  CAS  Google Scholar 

  4. Lu ZD, Lu MB, He F, Yu LJ (2009) Bioresour Technol 100:2026–2031

    Article  CAS  Google Scholar 

  5. Akerberg C, Zacchi G (2000) Bioresour Technol 75:119–126

    Article  CAS  Google Scholar 

  6. Kim TH, Nghiem NP, Taylor F, Hicks KB (2011) Appl Biochem Biotechnol 164:534–545

    Article  CAS  Google Scholar 

  7. Linde M, Galbe M, Zacchi G (2008) Bioresour Technol 99:6505–6511

    Article  CAS  Google Scholar 

  8. Marques S, Santos JAL, Girio FM, Roseiro JC (2008) Biochem Eng J 41:210–216

    Article  CAS  Google Scholar 

  9. Tang Y, Zhao DQ, Zhu LW, Jiang JX (2011) Eur Food Res Technol 233:489–495

    Article  CAS  Google Scholar 

  10. Bustos G, Moldes AB, Cruz JM, Dominguez JM (2004) J Agric Food Chem 52:5233–5239

    Article  CAS  Google Scholar 

  11. Gao MT, Hirata M, Toorisaka E, Hano T (2006) Biochem Eng J 28:87–91

    Article  CAS  Google Scholar 

  12. Chen KQ, Li JA, Ma JF, Jiang M, Wei P, Liu ZM, Ying HJ (2011) Bioresour Technol 102:1704–1708

    Article  CAS  Google Scholar 

  13. Ghose TK (1987) Pure Appl Chem 2:257–268

    Article  Google Scholar 

  14. Berghem LER, Petterson LG (1974) Eur J Biochem 2:295–305

    Article  Google Scholar 

  15. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2004) National Renewable Energy Laboratory, Technical Report NREL/Tp-510-42618 and 42630, CO

  16. McCleary BV, Solah V, Gibson TS (1994) J Cereal Sci 20:51–58

    Article  CAS  Google Scholar 

  17. Kjeldahl J (1883) Z Anal Chem 22:366–382

    Google Scholar 

  18. Miller GL (1959) Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  19. Wingren A, Galbe M, Zacchi G (2003) Biotechnol Prog 19:1109–1117

    Article  CAS  Google Scholar 

  20. Kristensen JB, Borjesson J, Bruun MH, Tjerneld F, Jorgensen H (2007) Enzyme Microb Tech 40:888–895

    Article  CAS  Google Scholar 

  21. Sarnthein-Graf C, La Mesa C (2004) Thermochim Acta 418:79–84

    Article  CAS  Google Scholar 

  22. Lu ZD, He F, Shi Y, Lu MB, Yu LJ (2010) Bioresour Technol 101:3642–3648

    Article  CAS  Google Scholar 

  23. Olofsson K, Bertilsson M, Liden G (2008) Biotechnol Biofuels 1:7

    Article  Google Scholar 

  24. Hoyer K, Galbe M, Zacchi G (2010) Biotechnol Biofuels 3:14

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this research from the Fundamental Research Funds for the Central Universities (BLYJ201212), National Science Foundation of China (31070510) and Major State Basic Research Projects of China (973-2010CB732204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Bu, L., He, J. et al. l(+)-Lactic acid production from furfural residues and corn kernels with treated yeast as nutrients. Eur Food Res Technol 236, 365–371 (2013). https://doi.org/10.1007/s00217-012-1865-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1865-x

Keywords

Navigation