Skip to main content
Log in

Simple, sensitive, accurate multiplex quantitative competitive PCR with capillary electrophoresis detection for the determination of genetically modified maize

  • Original paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Legislation in the EU requires that foods containing more than 0.9% of genetically modified organisms (GMOs) should be labelled. To this end, we have developed a simple and accurate capillary electrophoresis multiplex quantitative competitive PCR (ce-mqcPCR) method for event-specific quantification of the five novel GM maize events DAS59122, LY038, MON88017, MIR604 and Event 3272. The method combines the simplicity of constructing multiple competitors in silico with the high resolution and sensitivity of fluorescence capillary electrophoresis and the use of an internal template reference amplicon. The competitors are synthesised commercially and added in equal amounts as a restriction enzyme-digested plasmid insert to the multiplex PCR. Quantification is performed by analysing the relative amounts of GMO and GMO competitor fragment pairs after capillary electrophoresis and correcting for differences in maize DNA by comparing with the internal reference gene amplicon. Since the competitors employ the same primers as their corresponding targets, all existing qualitative multiplex PCRs can in principle easily be converted to quantitative assays without changing primer sets or amplification conditions. The ce-mqcPCR method correctly determined 120 GMO templates in known mixed samples. No false-positive or false-negative signals were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. James C (2010) ISAAA Brief No. 42

  2. Demeke T, Perry DJ, Scowcroft WR (2006) Can J Plant Sci 86:1–23

    Article  Google Scholar 

  3. Marmiroli N, Maestri E, Gulli M, Malcevschi A, Peano C, Bordoni R, De Bellis G (2008) Anal Bioanal Chem 392:369–384

    Article  CAS  Google Scholar 

  4. Holst-Jensen A (2009) Biotechnol Adv 27:1071–1082

    Article  CAS  Google Scholar 

  5. Michelini E, Simoni P, Cevenini L, Mezzanotte L, Roda A (2008) Anal Bioanal Chem 392:355–367

    Article  CAS  Google Scholar 

  6. Shrestha HK, Hwu KK, Chang MC (2010) Trends Food Sci Technol 21:442–454

    Article  CAS  Google Scholar 

  7. von Götz F (2010) Anal Bioanal Chem 396:1961–1967

    Article  Google Scholar 

  8. Grothaus GD, Bandla M, Currier T, Giroux R, Jenkins GR, Lipp M, Shan GM, Stave JW, Pantella V (2006) J AOAC Int 89:913–928

    CAS  Google Scholar 

  9. Querci M, Foti N, Bogni A, Kluga L, Broll H, Van den Eede G (2009) Food Anal Meth 2:325–336

    Article  Google Scholar 

  10. Nadal A, Coll A, La Paz JL, Esteve T, Pla M (2006) Electrophoresis 27:3879–3888

    Article  CAS  Google Scholar 

  11. Heide BR, Heir E, Holck A (2008) Eur Food Res Technol 227:527–535

    Article  CAS  Google Scholar 

  12. Holck A, Pedersen BO, Heir E (2010) Eur Food Res Technol 231:475–483

    Article  CAS  Google Scholar 

  13. Leimanis S, Hamels S, Naze F, Mbella GM, Sneyers M, Hochegger R, Broll H, Roth L, Dallmann K, Micsinai A, La Paz JL, Pla M, Brunen-Nieweler C, Papazova N, Taverniers I, Hess N, Kirschneit B, Bertheau Y, Audeon C, Laval V, Busch U, Pecoraro S, Neumann K, Rosel S, van Dijk J, Kok E, Bellocchi G, Foti N, Mazzara M, Moens W, Remacle J, Van Den Eede G (2008) Eur Food Res Technol 227:1621–1632

    Article  CAS  Google Scholar 

  14. Bahrdt C, Krech AB, Wurz A, Wulff D (2010) Anal Bioanal Chem 396:2103–2112

    Article  CAS  Google Scholar 

  15. Holck AL, Drømtorp SM, Heir E (2009) Eur Food Res Technol 230:185–194

    Article  CAS  Google Scholar 

  16. Heide BR, Drømtorp SM, Rudi K, Heir E, Holck A (2008) Eur Food Res Technol 227:1125–1137

    Article  CAS  Google Scholar 

  17. Rudi K, Rud I, Holck A (2003) Nucl Acids Res 31:e62

    Article  Google Scholar 

  18. Kalogianni DP, Elenis DS, Christopoulos TK, Loannou PC (2007) Anal Chem 79:6655–6661

    Article  CAS  Google Scholar 

  19. Studer E, Rhyner C, Luthy J, Hubner P (1998) Z Lebensm Unters Forsch 207:207–213

    Article  CAS  Google Scholar 

  20. Hardegger M, Brodmann P, Herrmann A (1999) Eur Food Res Technol 209:83–87

    Article  CAS  Google Scholar 

  21. Garcia-Canas V, Cifuentes A, Gonzalez R (2004) Anal Chem 76:2306–2313

    Article  CAS  Google Scholar 

  22. Bustin SA (2002) J Mol Endocrinol 29:23–29

    Article  CAS  Google Scholar 

  23. Dufva M (2005) BioTechniques 39:484–484

    Article  CAS  Google Scholar 

  24. Dong W, Yang LT, Shen KL, Kim B, Kleter GA, Marvin HJP, Guo R, Liang WQ, Zhang DB (2008) BMC Bioinform 9:260–267

    Article  Google Scholar 

  25. Raeymaekers L (1995) Genome Res 5:91–94

    Article  CAS  Google Scholar 

  26. Anon (2006) Appl note Taqman gene expression assays:1–6

  27. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) Clin Chem 55:611–622

    Article  CAS  Google Scholar 

  28. Holst-Jensen A, Rønning SB, Løvseth A, Berdal KG (2003) Anal Bioanal Chem 375:985–993

    CAS  Google Scholar 

  29. Delseny M, Glaszmann JC (1995) Biofutur 146:52–56

    Google Scholar 

  30. Akiyama H, Watanabe T, Wakabayashi K, Nakade S, Yasui S, Sakata K, Chiba R, Spiegelhalter F, Hino A, Maitani T (2005) Anal Chem 77:7421–7428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. P. Lea, Nofima AS, Norway, for statistical analyses. The authors declare that they have no conflict of interest. This work was supported by the Norwegian Research Council project 154254/130 and the European Commission through the Integrated Project Co-Extra, Contract No. 007158, under the 6th Framework Programme, priority 5, food quality and safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askild Lorentz Holck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holck, A.L., Pedersen, B.O. Simple, sensitive, accurate multiplex quantitative competitive PCR with capillary electrophoresis detection for the determination of genetically modified maize. Eur Food Res Technol 233, 951–961 (2011). https://doi.org/10.1007/s00217-011-1594-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-011-1594-6

Keywords

Navigation