Skip to main content
Log in

Enzymatic synthesis of oligoesculin: structure and biological activities characterizations

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The oligomerization of esculin, catalyzed by the laccase from Trametes versicolor, was realized in an attempt to improve the properties of this glycosidic coumarin. MALDI-TOF analyses showed a degree of oligomerization up to 9, whereas NMR spectra revealed the formation of C–C and C–O bridges, which involve both the phenolic and the glucosidic part of the coumarin. The solubility of oligomers is 189-fold higher than esculin’s solubility. Moreover, antioxidant properties of oligomers were correlated with their mass; the more the mass, the more the xanthine oxidase inhibitory activity and the radical scavenging activity are important. These experimental results were completed by in silico structural investigations, which suggested the preferential formation of C8–C8 linkages between esculin units during the oligomerization reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Glenn RG (2007) Functional foods, vol 3. FIS Publishing (ed), 104 p

  2. Hiramoto T, Saiki K, Masumura S, Shimizu T, Yamashita T, Kaneko N, Maruta Y (2002) US Patent No 6475544

  3. Soeda M, Umehara H, Seiga K, Yoshida T (1997) JP Patent No 09003054

  4. Sung Woo K (2004) KR20040097115

  5. Yu J, Wang L, Walzem RL, Miller EG, Pike LM, Patil BS (2005) J Agric Food Chem 53(6):2341–2343

    Article  Google Scholar 

  6. Chang WS, Chiang HC (1969) Anticancer Res 15(5B):1969–1973

    Google Scholar 

  7. Kontogiorgis C, Hadjipavlou-Litina D (2003) J Enzym Inhib Med Chem 18(1):63–69

    Article  CAS  Google Scholar 

  8. Cai Y, Baer-Dubowska W, Ashwood-Smith M, DiGiovanni J (1997) Carcinogenesis 18(1):215–222

    Article  CAS  Google Scholar 

  9. Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee KH (2003) Med Res Rev 23(3):322–345

    Article  CAS  Google Scholar 

  10. Wright WC (2002) Artemisia, ed Taylor & Francis, 359 p

  11. Akita M, Tsutsumi D, Kobayashi M, Kise H (2001) Biosci Biotechnol Biochem 65(7):1581–1588

    Article  CAS  Google Scholar 

  12. Mita N, Tawaki SI, Uyama H, Kobayashi S (2003) Macromol Biosci 3:253–257

    Article  CAS  Google Scholar 

  13. Uyama H, Kurioka H, Kobayashi S (1997) Polym J 29(2):190–192

    Article  CAS  Google Scholar 

  14. Ayyagari M, Akkara JA, Kaplan DL (1998) Solvent-enzyme-polymer interactions in the molecular-weight control of poly(m-cresol) synthesis in nonaqueous media. In: Gross, RA, Kaplan DL, Swift G (eds) Enzymes in polymer synthesis. ACS symposium series 684: Washington pp 112–124

  15. Kim YH, An ES, Song BK, Kim DS, Chelikani R (2003) Biotechnol Lett 25:1521–1524

    Article  CAS  Google Scholar 

  16. Dubey S, Singh D, Misra RA (1998) Enzyme Microb Techno 23:432–437

    Article  CAS  Google Scholar 

  17. Kurisawa M, Chung JE, Uyama H, Kobayashi S (2003) Macromol Biosci 3:758–764

    Article  CAS  Google Scholar 

  18. Desentis-Mendoza RM, Hernandez-Sanchez H, Moreno A, Rojas del CE, Chel-Guerrero L, Tamariz J, Jaramillo-Flores ME (2006) Biomacromolecules 7(6):1845–1854

    Article  CAS  Google Scholar 

  19. Kurisawa M, Chung JE, Uyama H, Kobayashi S (2003) Biomacromolecules 4:1394–1399

    Article  CAS  Google Scholar 

  20. Anthoni J, Linneton F, Wieruzeski JM, Magdalou J, Engasser JM, Chebil L, Humeau C, Ghoul M (2008) Rasayan J Chem 1(4):718–731

    CAS  Google Scholar 

  21. Kaneko T, Baba N, Matsuo M (2003) Chemico-Biological Interac 142(3):239

    Article  CAS  Google Scholar 

  22. Zhang HY, Wang LF (2004) THEOCHEM 673(1–3):199

    Article  CAS  Google Scholar 

  23. Chang WS, Chiang HC (1995) Anticancer Res 15:1969–1974

    CAS  Google Scholar 

  24. Burda S, Oleszek W (2001) J Agric Food Chem 49:2774–2779

    Article  CAS  Google Scholar 

  25. Saidman E, Yurquina A, Rudyk R, Molina MAA, Ferretti FH (2002) J Mol Struct 585:1–13

    CAS  Google Scholar 

  26. Tsai Lin HC, SH Chen CS, Chang YC, Lee CM, Lai ZY, Lin CM (2008) Biochem Pharmacol 75:1416–1425

    Article  Google Scholar 

  27. Trouillas P, Fagnere C, Lazzaroni R, Calliste C, Marfak A, Duroux J-L (2004) Food Chem 88(4):571–582

    Article  CAS  Google Scholar 

  28. Ncanana S, Baratto L, Roncaglia L, Riva S (2007) Adv Synth Catal 349:1507–1513

    Article  CAS  Google Scholar 

  29. Intra A, Nicotra S, Riva S, Danieli B (2005) Adv Synth Catal 347(7–8):973–977

    Article  CAS  Google Scholar 

  30. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  31. CyberChem, Inc. 1115 NW 4th Street Suite 2, Gainesville, FL 32601 USA

  32. Materials Studio software and Insight II software. Accelrys, 9685 Scranton Road, San Diego, CA 92121-3752, USA

  33. Hwang MJ, Stockfisch TP, Hagler AT (1994) J Am Chem Soc 116:2515–2525

    Article  CAS  Google Scholar 

  34. Sun H, Mumby SJ, Maple JR, Hagler AT (1994) J Am Chem Soc 116:2978–2987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ghoul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anthoni, J., Humeau, C., Maia, E.R. et al. Enzymatic synthesis of oligoesculin: structure and biological activities characterizations. Eur Food Res Technol 231, 571–579 (2010). https://doi.org/10.1007/s00217-010-1298-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1298-3

Keywords

Navigation