Skip to main content
Log in

Antihyperglycemic, antihyperlipidemic, and antioxidant effects of Chaenomeles sinensis fruit extract in streptozotocin-induced diabetic rats

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The rising incidence of diabetes mellitus (DM) is alarming and becoming a major health problem worldwide, which is mainly associated with hyperglycemia, abnormal lipid, and antioxidant profiles. Herbal medicines are being used by about 80% of the world population primarily in the developing countries for primary health care, including DM. Based on these facts, in this study, the antihyperglycemic, antihyperlipidemic, and antioxidant properties of Chaenomeles sinensis fruits extract (CSFE) were investigated in streptozotocin (STZ)-induced (55 mg/kg body weight) diabetic rats. CSFE was found to be rich in total phenolics and flavonoid contents. The following assays were performed: fasting blood glucose, hemoglobin (Hb), blood urea nitrogen (BUN), serum total cholesterol (TC), serum triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), serum glutamic pyruvic transaminase/alanine aminotransferase (SGPT/ALT), serum glutamic oxaloacetic transaminase/aspartate aminotransaminase (SGOT/AST), liver glycogen content and superoxide dismutase (SOD), reduced glutathione (GSH), and catalase (CAT) contents in liver and kidney. Oral administration of CSFE (500 mg/kg body weight) significantly decreased fasting blood glucose, BUN, and serum TC, TG, LDL-C, SGPT/ALT, and SGOT/AST, while it increased blood Hb content and HDL-C in diabetic rats. Furthermore, CSFE treatment significantly increased liver glycogen content, SOD, GSH, and CAT levels in diabetic rats. The results showed that CSFE significantly inhibited the progression of diabetes induced by STZ, and the inhibitory effect of CSFE on diabetes might be associated with its hypoglycemic effect, modulation of lipid metabolism, and its ability to scavenge free radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gavard JA, Lustman PJ, Clouse RE (1993) Prevalence of depression in adults with diabetes: an epidemiological evaluation. Diabetes Care 16:1167–1178

    Article  CAS  Google Scholar 

  2. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ (2001) The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 24:1069–1078

    Article  CAS  Google Scholar 

  3. WHO (2010) Global Strategy on diet, physical activity and Health, World Health Organization. http://www.who.int/dietphysicalactivity/publications/facts/diabetes/en/

  4. Sivajothi V, Dey A, Jayakar B, Rajkapoor B (2008) Antihyperglycemic, antihyperlipidemic and antioxidant effect of Phyllanthus rheedii on streptozotocin induced diabetic rats. Iranian J Pharm Res 7:53–59

    Google Scholar 

  5. Hamden K, Allouche N, Damak M, Elfeki A (2009) Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem Biol Interact 180:421–432

    Article  CAS  Google Scholar 

  6. Jia J, Zhang X, Hu YS, Wu Y, Wang QZ, Li NN, Guo QC, Dong XC (2009) Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats. Food Chem 115:32–36

    Article  CAS  Google Scholar 

  7. Oku H, Ueda Y, Ishiguro K (2003) Antipruritic Effects of the fruits of Chaenomeles sinensis. Biol Pharm Bull 26:1031–1034

    Article  CAS  Google Scholar 

  8. Hamauzu Y, Yasui H, Inno T, Kume C, Omanyuda M (2005) Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J Agric Food Chem 53:928–934

    Article  CAS  Google Scholar 

  9. Kim HK, Jeon WK, Ko BS (2000) Flavanone glycoside from the fruits of Chaenomeles sinensis. Natur Product Sci 6:79–81

    CAS  Google Scholar 

  10. Osawa K, Yasuda H, Morita H, Takeya K, Itokawa H (1997) Antibacterial and antihemolytic activity of triterpenes and β-sitosterol isolated from Chinese quince (Chaenomeles sinensis). Natur Med 51:365–367 (in Japanese)

    CAS  Google Scholar 

  11. Gholamhoseiniana A, Fallaha H, Sharififar F (2009) Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on α-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats. Phytomedicine 16:935–941

    Article  Google Scholar 

  12. Sancheti S, Sancheti S, Seo SY (2009) Chaenomeles Sinensis: a Potent α-and β-Glucosidase inhibitor. Am J Pharm Toxicol 4:8–11

    Article  Google Scholar 

  13. Zhang Q, Zhang J, Shen J, Silva A, Dennis DA, Barrow CJ (2006) A simple 96-well microplate method for estimation of total polyphenols content in seaweeds. J Appl Phycol 18:445–450

    Article  CAS  Google Scholar 

  14. Chang CC, Yang MH, Wen HM, Chern JC (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal 10:178–182

    CAS  Google Scholar 

  15. Pandikumar P, Prakash Babu N, Ignacimuthu S (2009) Hypoglycemic and antihyperglycemic effect of Begonia malabarica Lam. in normal and streptozotocin induced diabetic rats. J Ethnopharmacol 124:111–115

    Article  CAS  Google Scholar 

  16. Maiti R, Jana D, Das UK, Ghosh D (2004) Antidiabetic effect of aqueous extract of seed of Tarmarindus indica in streptozotocin-induced diabetic rats. J Ethnopharmacol 92:85–91

    Article  CAS  Google Scholar 

  17. Sadasivam S, Manickam A (1996) Carbohydrates. In: Sadasivam S, Manickam A (eds) Methods in biochemistry. New Age International Private Limited, New Delhi, pp 11–12

    Google Scholar 

  18. Misra HP, Fridovich IC (1972) The role of superoxide anion in the auto oxidation of epinephrine and a simple assay for super oxide dismutase. J Biol Chem 247:3170–3175

    CAS  Google Scholar 

  19. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  Google Scholar 

  20. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  21. Klein G, Kim J, Himmeldirk K, Cao Y, Chen X (2007) Antidiabetes and anti-obesity activity of Lagerstroemia speciosa. eCAM 4:401–407

    Google Scholar 

  22. Aslan M, Orhan DD, Orhan N, Sezik E, Yesilada E (2007) A study of antidiabetic and antioxidant effects of Helichrysum graveolens capitulums in streptozotocin-induced diabetic rats. J Med Food 10:396–400

    Article  CAS  Google Scholar 

  23. Ardestani A, Yazdanparast R (2007) Flavonoids as potential therapeutic agents for type 1 diabetes. Med Hypotheses 69:955

    Article  CAS  Google Scholar 

  24. Kannel WB, Mc Gee DL (1979) Diabetes and cardiovascular risk factors: the Framingham study. Circulation 59:8–13

    CAS  Google Scholar 

  25. Ahmed I, Lakhani MS, Gillet M, John A, Raza H (2001) Hypotriglyceridemic and hypocholesterolemic effects of antidiabetic Momordica charantia (Karela) fruit extract in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 51:155–161

    Article  CAS  Google Scholar 

  26. Kritchevsky D (1978) Fiber, lipids and atherosclerosis. Am J Clin Nutr (Suppl. 31):65–74

  27. Kelly JJ, Tsai AC (1978) Effect of pectin, gum Arabic and agar on cholesterol absorption, synthesis and turnover in rats. J Nutr 108:630–639

    Google Scholar 

  28. Bopanna KN, Kannan J, Gadgil S, Balaraman ER, Rathore SP (1997) Antidiabetic and antihyperglycaemic effects of neem seed kernel powder on alloxan diabetic rabbits. Indian J Pharmacol 29:162–167

    CAS  Google Scholar 

  29. Golden S, Wals PA, Okakima F (1979) Glycogen synthesis by hepatocytes from diabetic rats. Biochem J 182:727–734

    CAS  Google Scholar 

  30. Vats V, Yadav SP, Grover JK (2004) Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol 90:155–160

    Article  CAS  Google Scholar 

  31. Ramesh B, Pugalendi KV (2006) Antioxidant role of Umbelliferone in STZ-diabetic rats. Life Sci 79:306–310

    Article  CAS  Google Scholar 

  32. Tawta M, Ikeda M, Kodama Y, Aida K, Onaya T (2000) A type 2 diabetic patient with liver dysfunction due to human insulin. Diabetes Res Clin Pract 49:17–21

    Article  Google Scholar 

  33. Almdal TP, Vilstrup H (1988) Strict insulin treatment normalizes the organic nitrogen contents and the capacity of urea-N synthesis in experimental diabetes in rats. Diabetologica 31:114–118

    Article  CAS  Google Scholar 

  34. Lee MH, Son YK, Han YN (2002) Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Arch Pharm Res 25:842–850

    Article  CAS  Google Scholar 

  35. Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 51:117–123

    Article  CAS  Google Scholar 

  36. Kamalakkannan N, Prince PS (2006) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol 98:97–103

    Article  CAS  Google Scholar 

  37. Jang SM, Yee ST, Choi J, Choi MS, Do GM, Jeon SM, Yeo J, Kim MJ, Seo KI, Lee MK (2009) Ursolic acid enhances the cellular immune system and pancreatic beta-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int Immunopharmacol 9:113–119

    Article  CAS  Google Scholar 

  38. de Melo CL, Queiroz MG, Fonseca SG, Bizerra AM, Lemos TL, Melo TS, Santos FA, Rao VS (2010) Oleanolic acid, a natural triterpenoid improves blood glucose tolerance in normal mice and ameliorates visceral obesity in mice fed a high-fat diet. Chem Biol Interact 185:59–65

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Seo Chun Gun and National Research Foundation of Korea.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Yum Seo.

Additional information

S. Sancheti and S. Sancheti contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancheti, S., Sancheti, S., Bafna, M. et al. Antihyperglycemic, antihyperlipidemic, and antioxidant effects of Chaenomeles sinensis fruit extract in streptozotocin-induced diabetic rats. Eur Food Res Technol 231, 415–421 (2010). https://doi.org/10.1007/s00217-010-1291-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-010-1291-x

Keywords

Navigation