Skip to main content
Log in

Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A process for enzyme-assisted extraction of polyphenols from grape pomace was developed on laboratory and pilot-plant scale. After resuspending grape pomace in water, the skins were ground and the resulting mash was pasteurized to inactivate the deteriorative enzymes responsible for polyphenol degradation, and then pre-extracted with hot water. Subsequently, cell wall polysaccharides were hydrolyzed. The extract was separated from the solid residue by pressing, and finally spray dried. Before scaling-up, enzymatic hydrolysis was optimized on laboratory scale using a D-optimal design and analyzed by response surface methodology. A mixture of pectinolytic and cellulolytic enzyme preparations (ratio 2:1) yielded the highest amounts of phenolic compounds after 2 h of treatment, applying a dosage of 4,500 mg/kg (based on dry matter) at T = 40 °C and pH 4.0. Aqueous pre-extraction of the pomace followed by enzymatic treatment resulted in significantly improved extraction yields reaching 91.9, 92.4, and 63.6% for phenolic acids, non-anthocyanin flavonoids and anthocyanins, respectively. As the yields obtained were comparable to those from sulfite-assisted extraction, this process can be considered a suitable alternative to the application of sulfite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. FAOSTAT—FAO Statistical Database, http://www.fao.org

  2. Famuyiwa OO, Ough CS (1990) J Agric Food Chem 38:966–968

    Article  CAS  Google Scholar 

  3. Silva ML, Macedo AC, Malcata FX (2000) Food Sci Technol Int 6:285–300

    Article  CAS  Google Scholar 

  4. Nurgel C, Canbas A (1998) Am J Enol Vitic 49:95–99

    CAS  Google Scholar 

  5. Braga FG, Lencart e Silva FA, Alves A (2002) Am J Enol Vitic 53:41–45

    CAS  Google Scholar 

  6. Palma M, Barroso CG (2002) Anal Chim Acta 458:119–130

    Article  CAS  Google Scholar 

  7. Hang YD, Woodams EE (1985) Biotechnol Lett 7:253–254

    Article  CAS  Google Scholar 

  8. Schieber A, Kammerer DR, Stintzing FC, Carle R (2002) In: Empis JA (ed) Proceedings of the international congress on pigments in food, Lisbon, Portugal, 11–14, Juni 2002, pp 87–90

  9. Bravo L, Saura-Calixto F (1998) Am J Enol Vitic 49:135–141

    CAS  Google Scholar 

  10. Martin-Carron N, Garcia-Alonso A, Goni I, Saura-Calixto F (1997) Am J Enol Vitic 48:328–332

    Google Scholar 

  11. Valiente C, Arrigoni E, Esteban RM (1995) J Food Sci 60:818–820

    Article  CAS  Google Scholar 

  12. Bentivegna SS, Whitney KM (2002) Food Chem Toxicol 40:1731–1743

    Article  CAS  Google Scholar 

  13. Schieber A, Stintzing FC, Carle R (2001) Trends Food Sci Technol 12:401–413

    Article  CAS  Google Scholar 

  14. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Crit Rev Food Sci Nutr 45:287–306

    Article  CAS  Google Scholar 

  15. Monagas M, Hernandez-Ledesma B, Gomez-Cordoves C, Bartolome B (2006) J Agric Food Chem 54:319–327

    Article  CAS  Google Scholar 

  16. Bocevska M, Stevcevska V (1997) Food Technol Biotechnol 35:139–143

    CAS  Google Scholar 

  17. Girard B, Mazza G (1998) In: Mazza G (ed) Functional foods. Technomic Publishing Company, Lancaster, pp 139–191

    Google Scholar 

  18. Metivier RP, Francis FJ, Clydesdale FM (1980) J Food Sci 45:1099–1100

    Article  CAS  Google Scholar 

  19. Gastaminza G, Quirce S, Torres M, Tabar A, Echechipía S, Munoz D, Fernández De Corres L (1995) Clin Exp Allergy 25:698–703

    Article  CAS  Google Scholar 

  20. Gruber J, St Clair L (1994) Food Aust 46:500

    Google Scholar 

  21. Adams JB (1997) Food Chem 59:401–409

    Article  CAS  Google Scholar 

  22. Meyer AS (2002) Fruit Process 12:29–33

    CAS  Google Scholar 

  23. Meyer AS, Jepsen SM, Sørensen NS (1998) J Agric Food Chem 46:2439–2446

    Article  CAS  Google Scholar 

  24. Kammerer DR, Claus A, Schieber A, Carle R (2005) J Food Sci 70:157–163

    Article  Google Scholar 

  25. Kammerer DR, Claus A, Carle R, Schieber A (2004) J Agric Food Chem 52:4360–4367

    Article  CAS  Google Scholar 

  26. Chandra A, Rana J, Li Y (2001) J Agric Food Chem 49:3515–3521

    Article  CAS  Google Scholar 

  27. Stoll T, Schweiggert U, Schieber A, Carle R (2003) Inn Food Sci Emerg Technol 4:415–423

    Article  CAS  Google Scholar 

  28. Düsterhöft EM, Engels FM, Voragen AGJ (1993) Bioresour Technol 44:39–46

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Felsengartenkellerei Besigheim e.G. for providing grape pomace. We are also grateful to Klaus Mix for excellent technical assistance. This research project was supported by the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn), the AiF and the Ministry of Economics and Technology, AiF-Project No.: 14039 BG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schieber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, T., Göppert, A., Kammerer, D.R. et al. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. Eur Food Res Technol 227, 267–275 (2008). https://doi.org/10.1007/s00217-007-0720-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0720-y

Keywords

Navigation