Skip to main content
Log in

Effect of radiofrequency heating on acrylamide formation in bakery products

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This work was addressed to study the influence of radiofrequency (RF) heating on acrylamide (AA) formation in bakery products. To this purpose, leavened cakes and short dough biscuits were baked to a final moisture of 3.5 and 3.0%, respectively, by means of conventional convection heating or different combinations of conventional and RF heating. Results showed that, with respect to the baking process entirely carried out in an air-circulating oven, the RF-assisted baking process, i.e. the application of RF heating in the last stages of the baking process, resulted to be a promising strategy to keep low the AA levels in the bakery products. In particular, the best results were obtained for products which were moved from the hot-air baking to the RF heating when their residual moisture was still fairly high (around 10%). Results also suggested that, when very low values of residual moisture are required, this technological intervention is more suitable to thin bakery products, such as biscuits, than to thick products, such as leavened cakes, because of excessive browning in the internal portion as a consequence of the RF heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tareke E, Rydberg P, Karlsson P, Eriksson S, Törnqvist M (2002) J Agric Food Chem 50:4998–5006

    Article  CAS  Google Scholar 

  2. Friedman M (2003) J Agric Food Chem 51:4504–4526

    Article  CAS  Google Scholar 

  3. Yaylayan VA, Wnorowski A, Perez Locas C (2003) J Agric Food Chem 51:1753–1757

    Article  CAS  Google Scholar 

  4. Taeymans D, Wood J, Ashby P, Blank I, Studer A, Stadler RH, Gonde P, van Eijck P, Lalljie S, Lingnert H, Lindblom M, Matissek R, Mueller D, Tallmadge D, O’Brien J, Thompson S, Silvani D, Whitmore T (2004) Crit Rev Food Sci Nutr 44:323–347

    Article  CAS  Google Scholar 

  5. Claeys WL, de Vleeschouer K, Hendrickx ME (2005) Trends Food Sci Technol 16(5):181–193

    Article  CAS  Google Scholar 

  6. Mottram DS, Wedzicha BL, Dodson A (2005) Nature 419:448–449

    Article  CAS  Google Scholar 

  7. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy P, Robert MC, Riediker S (2002) Nature 419:449–450

    Article  CAS  Google Scholar 

  8. Biedermann M, Noti A, Biedermann-Brem S, Mozzetti V, Grob K (2002) Mitt Lebensm Hyg 93:668–687

    CAS  Google Scholar 

  9. Becalski A, Lau BPY, Lewis D, Seaman SW, Hayward S, Sahagian M, Ramesh M, Leclerc Y (2004) J Agric Food Chem 52:3801–3806

    Article  CAS  Google Scholar 

  10. Zyzak DV, Sanders RA, Stojanovic M, Tallmadge DH, Loye Eberhart B, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP, Villagran MD (2003) J Agric Food Chem 51:4782–4787

    Article  CAS  Google Scholar 

  11. Biedermann M, Biedermann-Brem S, Noti A, Grob K (2002) Mitt Lebensm Hyg 93:653–667

    CAS  Google Scholar 

  12. Lingnert H, Grivas S, Jagerstad M, Skog K, Tornqvist M, Aman P (2002) Scand J Nutr 46(4):159–172

    Article  Google Scholar 

  13. Biedermann M, Grob K (2003) Mitt Lebensm Hyg 93:668–687

    Google Scholar 

  14. Rydberg P, Eriksson S, Tareke E, Karlsson K, Ehrenberg L, Törnqvist M (2003) J Agric Food Chem 51:7012–7018

    Article  CAS  Google Scholar 

  15. Becalski A, Lau BPY, Lewis D, Seaman SW (2003) J Agric Food Chem 51:802–808

    Article  CAS  Google Scholar 

  16. Taubert D, Harlfinger S, Henkes L, Berkels R, Schoemig E (2004) J Agric Food Chem 52:2735–2739

    Article  CAS  Google Scholar 

  17. Andrzejewski D, Roach JAG, Gay ML, Musser SM (2004) J Agric Food Chem 52:1996–2002

    Article  CAS  Google Scholar 

  18. Elmore JS, Koutsidis G, Dodson AT, Mottram DS, Wedzicha BL (2005) J Agric Food Chem 53:1286–1293

    Article  CAS  Google Scholar 

  19. CIAA (2004) Acrylamide status report December 2004. www.ciaa.be

  20. Wedzicha BL, Mottram DS, Elmore JS, Koutsidis G, Dodson AT (2005) In: Friedman M, Mottram D (eds) Chemistry and safety of acrylamide in food. Springer, New York, pp 235–253

    Chapter  Google Scholar 

  21. Kita A, Brathen E, Knutsen SH, Wicklund T (2004) J Agric Food Chem 52:7011–7016

    Article  CAS  Google Scholar 

  22. Granada C, Moreira RG, Tichy SE (2004) J Food Sci 69:E405–E411

    Article  Google Scholar 

  23. Gama-Baumgartner F, Grob K, Biedermann M (2004) Mitt Lebensm Hyg 95:110–117

    CAS  Google Scholar 

  24. Fredriksson H, Tallving J, Rosen J, Aman P (2004) Cereal Chem 81:650–653

    Article  CAS  Google Scholar 

  25. Jung MY, Choi DS, Ju JW (2003) J Food Sci 68:1287–1290

    Article  CAS  Google Scholar 

  26. Amrein TM, Escher F, Amadò R (2006) In: Skog K, Alexander J (eds) Acrylamide and other hazardous compounds in heat-treated foods. Woodhead Publishing Ltd., Cambridge, pp 459–477

    Google Scholar 

  27. Stadler RH (2006) In: Skog K, Alexander J (eds) Acrylamide and other hazardous compounds in heat-treated foods. Woodhead Publishing Ltd., Cambridge, pp 23–40

    Google Scholar 

  28. Grob K, Biedermann M, Biedermann-Brem S, Noti A, Imhof D, Amrein T, Pfefferle A, Bazzocco D (2003) Eur Food Res Technol 217:185–194

    Article  CAS  Google Scholar 

  29. Amrein TM, Schoenbaechler B, Escher F, Amadò R (2004) J Agric Food Chem 52:4282–4288

    Article  CAS  Google Scholar 

  30. Vattem DA, Shetty K (2003) Innov Food Sci Emerg Technol 4:331–338

    Article  CAS  Google Scholar 

  31. Fiselier K, Grob K, Pfefferle A (2004) Eur Food Res Technol 219:111–115

    Article  CAS  Google Scholar 

  32. Brathen E, Kita A, Knutsen SH, Wicklund T (2005) J Agric Food Chem 53:3259–3264

    Article  CAS  Google Scholar 

  33. Yanyun Z, Flugstad B, Kolbe E, Park JW, Wells JH (2000) J Food Proc Eng 23:25–55

    Article  Google Scholar 

  34. Piyasena P, Dussaul C, Koutchma T, Ramaswamy HS, Awuah GB (2003) Crit Rev Food Sci Nutr 43(6):587–606

    Article  Google Scholar 

  35. Fellows PJ (2000) Food processing technology. Woodhead Publishing Ltd., Cambridge, pp 365–384

    Google Scholar 

  36. Gallagher E, Kenny S, Arendt EK (2005) Eur Food Res Technol 221:237–243

    Article  CAS  Google Scholar 

  37. Ball CO (1923) Bull Natl Resour Counc 37

  38. Clydesdale FM (1978) Crit Rev Food Sci Nutr 10:243–301

    Article  CAS  Google Scholar 

  39. Lagalante AF, Felter MA (2004) J Agric Food Chem 52:3744–3748

    Article  CAS  Google Scholar 

  40. Fleischman GJ (1996) J Food Eng 27(4):337–351

    Article  Google Scholar 

  41. Datta AK, Hu W (1992) Food Technol 46(12):53–56

    Google Scholar 

  42. Wang Y, Wig TD, Tang J, Hallberg LM (2003) J Food Sci 68:2–7

    Article  Google Scholar 

  43. Zhang L, Lyng JG, Brunton NP (2004) Meat Sci 68:257–268

    Article  Google Scholar 

  44. Ohlsson T, Risman PO (1978) J Microw Power 13(4):303–307

    Google Scholar 

  45. Datta AK (2000) In: Datta AK, Anatheswaran RC (eds) Handbook of microwave technology for food applications. Marcel Dekker, Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Anese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anese, M., Sovrano, S. & Bortolomeazzi, R. Effect of radiofrequency heating on acrylamide formation in bakery products. Eur Food Res Technol 226, 1197–1203 (2008). https://doi.org/10.1007/s00217-007-0693-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0693-x

Keywords

Navigation