Skip to main content
Log in

Quantification of DNA during winemaking by fluorimetry and Vitis vinifera L.-specific quantitative PCR

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The ability to genotype wine would be of a great benefit to control the varietal wine authenticity. In this paper, we assessed the fate of grapevine DNA and total DNA during vinification to suggest the latest sampling point that would allow genotyping. The total DNA concentration was measured by fluorimetry and the specific Vitis vinifera L. DNA concentration was measured by quantitative PCR in samples obtained from different steps of vinifications of four wines. To elucidate the effect of pre-extraction and extraction steps on DNA yield from wine, several samples from bottle of wine, two precipitation salts, and two DNA extraction solutions were tested. It was found that hundreds of genome equivalents of grapevine DNA can be extracted from every winemaking sample and from wine. In tested samples, differences in DNA yield among wines from different grapevine varieties, differences among extraction methods, and sampling variation in wine were not statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CTAB:

Cetyltrimethylammonium bromide

GuSCN:

Guanidium isothiocyanate

qPCR:

Quantitative PCR

RAPD:

Random amplification of polymorphic DNAs

AFLP:

Amplified fragment length polymorphism

References

  1. Moreno-Arribas MV, Cabello F, Polo MC, Martin-Alvarez PJ, Pueyo E (1999) J Agric Food Chem 47:114–120

    Article  CAS  Google Scholar 

  2. Garcia-Beneytez E, Cabello F, Revilla E (2003) J Agric Food Chem 51:5622–5629

    Article  CAS  Google Scholar 

  3. Vasconcellos AMP, Chaves das Neves HJ (1989) J Agric Food Chem 37:931–937

    Article  Google Scholar 

  4. Munoz-Organero G, Ortiz JM (2004) Riv Vitic Enol 3:55–64

    Google Scholar 

  5. Almeida CM, Vasconcelos MT (2003) J Agric Food Chem 51:4788–4798

    Article  CAS  Google Scholar 

  6. This P, Cuisset C, Boursiquot JM (1997) Am J Enol Vitic 48:492–501

    CAS  Google Scholar 

  7. Cervera MT, Cabezas JA, Sancha JC, de Toda FM, Martinez-Zapater JM (1998) Theor Appl Genet 97:51–59

    Article  CAS  Google Scholar 

  8. Garcia-Beneytez E, Moreno-Arribas MV, Borrego J, Polo MC, Ibanez J (2002) J Agric Food Chem 50:6090–6096

    Article  CAS  Google Scholar 

  9. Siret R, Gigaud O, Rosec JP, This P (2002) J Agric Food Chem 50:3822–3827

    Article  CAS  Google Scholar 

  10. Thomas MR, Cain P, Scott NS (1994) Plant Mol Biol 25:939–949

    Article  CAS  Google Scholar 

  11. Lodhi MA, Ye GN, Weeden NF, Reisch BI (1994) Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  12. Faria MA, Magalhaes R, Ferreira MA, Meredith CP, Monteiro FF (2000) J Agric Food Chem 48:1096–1100

    Article  CAS  Google Scholar 

  13. Gaillard C, Strauss F (1990) Nucleic Acids Res 18:378–378

    Article  CAS  Google Scholar 

  14. Lefort F, Douglas GC (1999) Ann Forest Sci 56:259–263

    Article  Google Scholar 

  15. Borst A, Box ATA, Fluit AC (2004) Eur J Clin Microbiol Infect Dis 23:289–299

    Article  CAS  Google Scholar 

  16. Valsesia G, Gobbin D, Patocchi A, Vecchione A, Pertot I, Gessler C (2005) Phytopathology 95:672–678

    Article  CAS  Google Scholar 

  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) J Mol Biol 215:403–410

    CAS  Google Scholar 

  18. Chomczynski P, Mackey K, Drews R, Wilfinger W (1997) Biotechniques 22:550–553

    CAS  Google Scholar 

  19. Lewis GD, Molloy SL, Greening GE, Dawson J (2000) J Appl Microbiol 88:633–640

    Article  CAS  Google Scholar 

  20. Olexova L, Dovicovicova L, Kuchta T (2004) Eur Food Res Technol 218:390–393

    Article  CAS  Google Scholar 

  21. Brezna B, Hudecova L, Kuchta T (2006) Eur Food Res Technol 223:373–377

    Article  CAS  Google Scholar 

  22. Brezna B, Hudecova L, Kuchta T (2006) Eur Food Res Technol 222:600–603

    Article  CAS  Google Scholar 

  23. Savazzini F, Martinelli L (2006) Anal Chim Acta 563:274–282

    Article  CAS  Google Scholar 

  24. Baleiras-Couto MM, Eiras-Dias JE (2006) Anal Chim Acta 563:283–291

    Article  CAS  Google Scholar 

  25. Hawkins TL, O’Connor-Morin T, Roy A, Santillan C (1994) Nucleic Acids Res 22:4543–4544

    Article  CAS  Google Scholar 

  26. Ghiringhelli F, Schmitt E (2004) Ann Biol Clin (Paris) 62:73–78

    CAS  Google Scholar 

  27. Chung D, Drabek J, Opel KL, Butler JM, McCord BR (2004) J Forensic Sci 49:733–740

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grant of the Czech Ministry of Education 1K04104. Partial results of this project were presented at Ampelos 2006—2nd International Conference in Santorini, Greece. We thank Dr. M. Navrátil for generous instrumental provision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Drábek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drábek, J., Stávek, J., Jalůvková, M. et al. Quantification of DNA during winemaking by fluorimetry and Vitis vinifera L.-specific quantitative PCR. Eur Food Res Technol 226, 491–497 (2008). https://doi.org/10.1007/s00217-007-0561-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-007-0561-8

Keywords

Navigation