Skip to main content

Advertisement

Log in

Inactivation and reactivation of horseradish peroxidase treated with supercritical carbon dioxide

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Effects of supercritical carbon dioxide (SCCO2) on the activity of horseradish peroxidase (HRP) in pH 5.6 acetate buffer solution were investigated. SCCO2 treatment could effectively inactivate HRP. Higher pressure, higher temperature, and longer treatment time caused more inactivation. The maximum reduction of HRP activity reached nearly 90% at 30 MPa and 55 °C for 60 min. Analysis of first-order reaction kinetic data (characterized by a rate constant k and by a decimal reduction time D) showed that D value was closely related to the pressure and temperature of SCCO2 treatment. Higher pressures or higher temperatures resulted in lower D values (higher k), the D value of HRP was minimized to 64.52 min treated by the combination of 30 MPa and 55 °C. The Z p, representing the range of applied pressure between which the D values change by a factor of 10, was 114.81 MPa. The activity of HRP treated by SCCO2 was reactivated significantly after initial 7-day storage at 4 °C apart from the samples at 30 MPa for 60 min, indicating the HRP inactivation may be reversible and the reactivation of HRP is dependent on the pressure level and treatment time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Knez Ž, Habulin M, Krmelj V (1998) J Supercrit Fluids 14:17–29

    Article  Google Scholar 

  2. Hammond DA, Karel M, Klibanov AM (1985) Appl Biochem Biotech 11:393–395

    Article  CAS  Google Scholar 

  3. Randolph TW, Blanch HW, Prausnitz JM, Wilke CR (1985) Biotechnol Lett 7(5):325–327

    Article  CAS  Google Scholar 

  4. Nakamura K, Chi MY, Yamada Y, Yano T (1986) Chem Eng Commun 45:207–210

    Article  CAS  Google Scholar 

  5. Eijs Van, de Jong JPL, Doddema HJ, Lindeboon DR (1988) In: Proceedings of the first International Symposium on Supercrit, Perrut M (eds), Fluids, vol. 2, pp 933–935

  6. Douglas AM, Blanch WH, Prausnitz JM (1991) Ind Eng Chem Res 30:939–941

    Article  Google Scholar 

  7. Valentine R, Russell AJ, Beckman EJ (1997) Abstr Am Chem Soc 213(4):162–169

    Google Scholar 

  8. Mertens B, Knorr D (1992) Food Technol 46:124–133

    Google Scholar 

  9. Kamihira M, Taniguchi M, Kobayashi T (1987) Agric Biol Chem 51:407–412

    CAS  Google Scholar 

  10. Arreola AG, Balaban MO, Wei CI, Peplow AJ, Marshall M, Cornell J (1991) J Food Quality 14:275–284

    Article  Google Scholar 

  11. Ballestra P, D.Silva AA, Cuq JL (1996) J Food Sci 61:829–831

    Article  CAS  Google Scholar 

  12. Ballestra P, Cuq JL (1998) Lebensm-Wiss Technol 31:84–88

    Article  CAS  Google Scholar 

  13. Shimoda M, Yamamoto Y, Cocunubo-Castellanos J, Tonoike H, Kawano T, Ishikawa H, Osajima Y (1998) J Food Sci 63:709–712

    Article  CAS  Google Scholar 

  14. Hong SI, Pyun YR (1999) J Food Sci 64:728–733

    Article  CAS  Google Scholar 

  15. Hong SI, Pyun YR (2001) Int J Food Microbiol 63:19–28

    Article  PubMed  CAS  Google Scholar 

  16. Erkmen O (2000) Int J Food Microbiol 17:225–232

    Article  CAS  Google Scholar 

  17. Erkmen O (2001) Int J Food Microbiol 65:131–135

    Article  PubMed  CAS  Google Scholar 

  18. Park SI, Lee JI, Park J (2002) J Food Sci 67:1827–1834

    Article  CAS  Google Scholar 

  19. Corwin H, Shellhammer TH (2002) J Food Sci 67:697–701

    Article  CAS  Google Scholar 

  20. Erkmen O (2001) J Food Eng 47:7–10

    Article  Google Scholar 

  21. Erkmen O, Karaman H (2001) J Food Eng 50:25–28

    Article  Google Scholar 

  22. Shimoda M, Cocunubo-Castellanos J, Kago H, Miyake M, Osajima Y, Hayakawa I (2001) J Appl Microbiol 91:306–311

    Article  PubMed  CAS  Google Scholar 

  23. Taniguchi M, Kamihara M, Kobayashi T (1987) Agric Biol Chem 51:593–594

    CAS  Google Scholar 

  24. Balaban MO, Arreola AG, Marshall M, Peplow A, Wei CI, Cornell J (1991) J Food Sci 56:743–746

    Article  CAS  Google Scholar 

  25. Tedjo W, Eshtiaghi MN, Knorr D (2000) J Food Sci 65:1284–1287

    Article  CAS  Google Scholar 

  26. Chen JS, Balaban MO, Wei C, Marshall MR, Hsu WY (1992) J Agr Food Chem 40:2345–2349

    Article  CAS  Google Scholar 

  27. Ishikawa H, Shimoda M, Yonekura A, Osajima Y (1996) J Agr Food Chem 44:2646–2649

    Article  CAS  Google Scholar 

  28. Basak S, Ramaswamy HS (1996) Food Res Int 29:601–607

    Article  CAS  Google Scholar 

  29. Veitch NC (2004) Phytochemistry 65:249–259

    Article  PubMed  CAS  Google Scholar 

  30. Chattopadhyay K, Mazumdar S (2000) Biochemistry 39:263–270

    Article  PubMed  CAS  Google Scholar 

  31. Lemos MA, Oliveira JC, Saraiva JA (2000) Lebensm-Wiss Technol 33:362–368

    Article  CAS  Google Scholar 

  32. Weng Z, Hendrickx M, Maesmans G, Tobback P (1991) J Food Sci 56:567–571

    Article  CAS  Google Scholar 

  33. Tams JW, Welinder KG (1998) FEBS lett 421:234–236

    Article  PubMed  CAS  Google Scholar 

  34. Günes B, Bayindirh A (1993) Lebensm-Wiss Technol 26:406–410

    Article  Google Scholar 

  35. Segel IH (1976) Biochemical calculations, vol. 1, 2nd edn. Wiley, New York

  36. Owasu-Yaw J, Marshall MR, Koburger JA, Wei CI (1988) J Food Sci 53:504–507

    Article  Google Scholar 

  37. Gui F, Chen F, Wu J, Wang Z, Liao X, Hu X (2005) Food Chem, in press

  38. Machado MF, Saraiva J (2002) J Mol Catal B-Enzym 19–20:451–457

    Article  Google Scholar 

Download references

Acknowledgement

This work was support by the Project of the National Natural Science Foundation of P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, F., Wang, Z., Wu, J. et al. Inactivation and reactivation of horseradish peroxidase treated with supercritical carbon dioxide. Eur Food Res Technol 222, 105–111 (2006). https://doi.org/10.1007/s00217-005-0152-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-005-0152-5

Keywords

Navigation